Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior

Document Type : Research Paper

Authors

Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a natural nanofiller to produced PCL nanobiocomposite scaffold with both enhanced mechanical properties and appropriate biological properties.
Materials and Methods: Surface morphology and orientation of chitosan nanofibrils was investigated via atomic force microscopy (AFM). PCL/NC suspension solutions with various content of NC were prepared using dimethylformamide as a dipolar solvent to obtain homogenous solutions. The scaffolds were produced through a solvent casting procedure at room temperature. The prepared scaffolds was characterized using scanning electron microscopy (SEM), attenuated total reflection- fourier transform infrared (ATR-IR) spectroscopy, X-Ray diffraction (XRD), uniaxial mechanical testing, contact angle (CA) measurements and swelling and weight loss analysis. In vitro studies were also exceeded to evaluate the cellular compatibility of the prepared scaffolds.
Results: The average diameter of chitosan nanofibrils was measured 88±10 nm. The existence of NC in nanocomposite was proven by ATR-FTIR and XRD results. Interestingly, incorporation of 10% of NC into PCL, improved the tensile strength of scaffolds from 2.7 to 6.5 MPa while reduced the elasticity. What is more, water contact angel of the membranes was decreased from 133° to 88˚ which imply more surface wettability of nanocomposite scaffolds in comparison to PCL. Furthermore, the swelling ratio and weight loss rate of bionanocomposites were increased 30% and 2.5%, respectively. MTT biocompatibility assay and cell adhesion test demonstrated superior cellular behavior of the fibroblasts on nanocomposite scaffolds in comparison to pure PCL scaffold.
Conclusion: The acquired results expressed that the PCL/NC bionanocomposite can be a reliable candidate for tissue engineering applications.

Keywords


1. Lanza R, Langer R, Vacanti JP. Principles of Tissue Engineering (Fourth Edition). Boston: Academic Press; 2014.
2. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym Degrad Stab. 2010; 95(11): 2126-2146
3. Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering research: a review. Polym Int. 2007; 56(2): 145-157.
4. Faghihi F, Mirzaei E, Sarveazad A, Ai J, Ebrahimi Barough S, Lotfi A, Joghataei MT. Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells into Motorneuron-like Cells on Electrospun Gelatin Membrane. J Mol Neurosci. 2015; 55(4): 845-853.
5. Asvar Z, Mirzaei E, Azarpira N, Geramizadeh B, Fadaie M. Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology. J Mech Behav Biomed Mater. 2017; 75: 369-378.
6. Abedalwafa M, Wang F, Wang L, Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci. 2013; 34(2): 123-140.
7. Kumar MNR. A review of chitin and chitosan applications. React Funct Polym. 2000; 46(1): 1-27.
8. Ravi Kumar MNV. A review of chitin and chitosan applications. React Funct Polym. 2000; 46(1): 1-27.
9. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006; 31(6): 576-602.
10. Hayes M, Carney B, Slater J, Brück W. Mining marine shellfish wastes for bioactive molecules: Chitin and chitosan ndash; Part A: extraction methods. Biotechnol J. 2008; 3(7): 871-877.
11. Kaur S, Dhillon GS. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol. 2014; 40(2): 155-175.
12. Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001; 22(3) :261-268.
13. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006; 31(7): 603-632.
14. Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym. 2013; 91(2): 711-717.
15. Oksman K, Mathew AP, Bondeson D, Kvien I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Sci Technol. 2006; 66(15): 2776-2784.
16. Saba N, Tahir PM, Jawaid M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers. 2014; 6(8): 2247-2273.
17. Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers. 2010; 2(4): 728-7265.
18. Liu M, Zheng H, Chen J, Li S, Huang J, Zhou C. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydr Polym. 2016; 152: 832-840.
19. Zhu J, Wang Y, Liu J, Zhang Y. Facile one-pot synthesis of novel spherical zeolite–reduced graphene oxide composites for cationic dye adsorption. Ind Eng Chem Res. 2014; 53(35): 13711-13717.
20. Yang Y, Xie Y, Pang L, Li M, Song X, Wen J, Zhao H. Preparation of reduced graphene oxide/poly (acrylamide) nanocomposite and its adsorption of Pb (II) and methylene blue. Langmuir. 2013; 29(34): 10727-10736.
21. Mi H-Y, Jing X, Peng J, Salick MR, Peng X-F, Turng L-S. Poly (ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose. 2014; 21(4): 2727-2741.
22. Durango A, Soares N, Andrade N. Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control. 2006; 17(5): 336-341.
23. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007; 28(2): 344-353.
24. Khalil HPSA, Davoudpour Y, Aprilia NAS, Mustapha A, Hossain S, Islam N, Dungani R. Nanocellulose-Based Polymer Nanocomposite: Isolation, Characterization and Applications. Nanocellulose Polymer Nanocomposites: John Wiley & Sons, Inc.; 2014. p. 273-309.
25. Darder M, Aranda P, Ruiz‐Hitzky E. Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater. 2007; 19(10): 1309-1319.
26. Biswas A, Bayer IS, Zhao H, Wang T, Watanabe F, Biris AS. Design and synthesis of biomimetic multicomponent all-bone-minerals bionanocomposites. Biomacromolecules. 2010; 11(10): 2545-2549.
27. Siqueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules. 2008; 10(2): 425-432.
28. Chen B, Sun K, Ren T. Mechanical and viscoelastic properties of chitin fiber reinforced poly (ε-caprolactone). Eur Polym J. 2005; 41(3): 453-457.
29. Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan E, Thomas S. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym. 2011; 86(4): 1790-1798.
30. Lin N, Chen G, Huang J, Dufresne A, Chang PR. Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly (lactic acid): A case of cellulose whisker‐graft‐polycaprolactone. J Appl Polym Sci. 2009; 113(5): 3417-3425.
31. Juntaro J, Ummartyotin S, Sain M, Manuspiya H. Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties. Carbohydr Polym. 2012; 87(4): 2464-2469.
32. Xiang C, Taylor AG, Hinestroza JP, Frey MW. Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci. 2013; 127(1): 79-86.
33. Ji Y-l, Wolfe PS, Rodriguez IA, Bowlin GL. Preparation of chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydr Polym. 2012; 87(3): 2313-2319.
34. Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A. Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites. Composites Sci Technol. 2014; 90: 96-101.
35. Kiziltas A, Nazari B, Kiziltas EE, Gardner DJ, Han Y, Rushing TS. Cellulose NANOFIBER‐polyethylene nanocomposites modified by polyvinyl alcohol. J Appl Polym Sci. 2016; 133(6): 42933- 42933.
36. Gomes S, Rodrigues G, Martins G, Roberto M, Mafra M, Henriques C, Silva J. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study. Mater Sci Eng C. 2015; 46: 348-358.
37. Ghorbani FM, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A. PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym. 2015; 118: 133-142.
38. Cao X, Dong H, Li CM. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules. 2007; 8(3): 899-904.
39. Sarasam A, Madihally SV. Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials. 2005; 26(27): 5500-5508.
40. Liu M, Dai L, Shi H, Xiong S, Zhou C. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C. 2015; 49: 700-712.
41. Venkatesan J, Qian Z-J, Ryu B, Kumar NA, Kim S-K. Preparation and characterization of carbon nanotube-grafted-chitosan–natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym. 2011; 83(2): 569-577.
42. Ikeda R, Fujioka H, Nagura I, Kokubu T, Toyokawa N, Inui A, Makino T, Kaneko H, Doita M, Kurosaka M. The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int Orthop. 2009; 33(3): 821-828.
43. Surucu S, Sasmazel HT. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds. Int J Biol Macromol. 2016; 92: 321-328.
44. Van der Schueren L, Steyaert I, De Schoenmaker B, De Clerck K. Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym. 2012; 88(4): 1221-1226.
45. Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod. 2010; 32(3): 627-633.
46. Raucci M, D’Antò V, Guarino V, Sardella E, Zeppetelli S, Favia P, Ambrosio L. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Acta Biomater. 2010; 6(10): 4090-4099.
47. Fabbri P, Bondioli F, Messori M, Bartoli C, Dinucci D, Chiellini F. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J Mater Sci Mater Med. 2010; 21(1): 343-351.
48. Ghaffari A, Navaee K, Oskoui M, Bayati K, Rafiee-Tehrani M. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur J Pharm Biopharm. 2007; 67(1): 175-186.
49. Wan Y, Wu H, Yu A, Wen D. Biodegradable polylactide/chitosan blend membranes. Biomacromolecules. 2006; 7(4): 1362-1372.
50. Roohani-Esfahani S, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater. 2011; 7(3): 1307-1318.
51. Bolaina-Lorenzo E, Martínez-Ramos C, Monleón-Pradas M, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM. Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility. Biomed Mater. 2016; 12(1): 015008.
52. Liu H, Liu W, Luo B, Wen W, Liu M, Wang X, Zhou C. Electrospun composite nanofiber membrane of poly (l-lactide) and surface grafted chitin whiskers: fabrication, mechanical properties and cytocompatibility. Carbohydr Polym. 2016; 147: 216-225.
53. Sailema-Palate GP, Vidaurre A, Campillo-Fernández A, Castilla-Cortázar I. A comparative study on Poly (ε-caprolactone) film degradation at extreme pH values. Polym Degrad Stab. 2016; 130: 118-125.
54. Bikiaris D, Panayiotou C. LDPE/starch blends compatibilized with PE‐g‐MA copolymers. J Appl Polym Sci. 1998; 70(8): 1503-1521.
55. Wu C-S. A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer. 2005; 46(1): 147-155.
56. Díaz E, Sandonis I, Valle MB. In vitro degradation of poly (caprolactone)/nHA composites. J Nanomater. 2014; 2014: 185-193.
57. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010; 35(10): 1217-1256.
58. Liu H, Leonas KK. Weight loss and morphology changes of electrospun poly (caprolactone) yarns during in vitro degradation. FIBER POLYM. 2010; 11(7): 1024-1031.
59. Heimowska A, Morawska M, Bocho-Janiszewska A. Biodegradation of poly (ε-caprolactone) in natural water environments. Pol J Chem Technol. 2017; 19(1): 120-126.
60. Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomed Mater. 2011; 6(1): 015009.
61. Nithya R, Sundaram NM. Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants. Int J Nanomedicine. 2015; 10(Suppl 1):119–127.
62. Shao H-J, Lee Y-T, Chen C-S, Wang J-H, Young T-H. Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials. 2010; 31(17): 4695-4705.
63. Hamilton V, Yuan Y, Rigney D, Puckett A, Ong J, Yang Y, Elder S, Bumgardner J. Characterization of chitosan films and effects on fibroblast cell attachment and proliferation. J Mater Sci Mater Med. 2006; 17(12): 1373-1381.
64. Chung T-W, Liu D-Z, Wang S-Y, Wang S-S. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials. 2003; 24(25): 4655-4661.
65. Rezwan K, Chen Q, Blaker J, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006; 27(18): 3413-3431.
66. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly (-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008; 29(34): 4532-4539.