Silver nanoparticles synthesized with a fraction from the bark of Eysenhardtia polystachya with high chalcone and dihydrochalcone content effectively inhibit oxidative stress in the zebrafish embryo model

Document Type: Research Paper

Authors

1 Laboratorio de Investigación de Productos Naturales. Escuela Superior de Ingenieria Quimica e Industrias extractivas IPN. Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo Lopez Mateos CP 07708, Cd. Mexico

2 Lab. De Hidrobiologia Experimental. Escuela Nacional de Ciencias Biologicas. Carpio y Plan de Ayala S/N, Cd de Méexico. CP 11340

3 CONACYT-IPICYT / CIIDZA, Camino a la Presa de San Jose 2055, Col. Lomas 4 section, CP 78216 San Luis Potosí México

Abstract

Objective(s): In this study, we desvcribe a simple eco-friendly approach for the synthesis of a potent, stable and benign silver nanoparticles to carry and deliver chalcones and dihydrochalcones present in a methanol extract of Eysenhardtia polystachya (EP).
Materials and Methods: In this process silver nanoparticles carring EP compounds (EP/AgNPs) are synthesized in a single step by eliminating the additional handling associated with incorporating EP compounds. The resulting nanoparticles (EP/AgNPs) were characterized using several physicochemical techniques. Cell viability was measured in vitro with RAW264.7 murine macrophage cells. In addition, we evaluated the ability of EP and EP/AgNPs to protect against glucose-induced oxidative in vivo stress using zebrafish embryos.
Results: The synthesized EP/AgNPs showed an absorption peak at 413 nm on ultraviolet-visible spectroscopy (UV-vis), revealing the surface plasmon resonance of the nanoparticles. Transmission electron microscopy (TEM) indicated that most of the particles were spherical with a diameter of 10 to 12 nm, a polydispersity index (PDI) of 0.197 and a zeta potential of –32.25 mV, suggesting high stability of these nanoparticles. This study also demonstrated the biocompatibility of the nanoparticles when tested in RAW264.7 cells and its protective efficacy against oxidative stress induced by the exposure of zebrafish embryos to high glucose concentrations. Treatment with EP/AgNPs increased the activity of anti-stress biomarkers such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total soluble protein. Exposure of the embryos to EP/AgNPs significantly (P<0.05) suppressed the formation of malondialdehyde (MDA) and lipid oxidation (LPO). Conclusion: EP/AgNPs synthesized from E. polystachya extract provide an effective defense against oxidative stress in zebrafish embryos.

Keywords


1.Valko M, Rhodes J, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006; 160(1): 1– 40.

2.Rahman T, Hosen I, Towhidul MM, Shekha HU. Oxidative stress and human health.  Adv Biosc Biotech. 2012; 3: 997-1019.

3. Dobrakowski M, Boroń M, Birkner E, Kasperczyk A, Chwalińska E, Lisowska G,  Kasperczyk S. The effect of a short-term exposure to lead on the levels of essential metal  ions, selected proteins related to them, and oxidative stress parameters in humans.Oxid Med Cell Longev.  2017; 2017: 8763793.

4.Birben E,  Sahiner UM,  Sackesen C,  Erzurum S,  Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012; 5(1): 9–19.

5.Kayalvizhi1 T, Ravikumar S, Venkatachalam P. Green synthesis of metallic silver nanoparticles using Curculigo orchioides rhizome extracts and evaluation of its antibacterial, larvicidal, and anticancer activity. J Environ Eng. 2016; 142: (144) C4016002.

6.Marin S,  Vlasceanu GM,  Tiplea RE,  Bucur IR, Lemnaru M,  Marin MM,     Grumezescu AM. pplications and toxicity of silver nanoparticles: A recent review. Curr Top Med Chem. 2015; 15(16): 1596-604.

7.Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S. Green synthesis of silver nanoparticles using Ganoderma neojaponicum Imazeki: a potential ytotoxic agent against breast cancer cells. Int J Nanomed. 2013; 8: 4399– 4413.

8.Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol. 2007; 3(1): 95–101.

9.Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng. 2006; 23(4): 171–184.

10.Froeschke S, Kohler S, Weber AP, Kasper G. Impact fragmentation of nanoparticle agglomerates. Aerosol Sci. 2003; 34(3): 275-287.

11.Mandal S, Sainkar SR, Sastry M. Patterned silver nanoparticles films by an ion complexation pocess in thermally evaporated fatty acid films. Mater Res Bull. 2002; 37(1): 1613-1621.

12.Marzan LML, Tourino I L. Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants.Langmuir. 1996; 12: 3585-3589.

13.Petit C, Lixon P, Pileni MP. In situ synthesis of silver nanoclusters in AOT reverse micelles. J Phys Chem. 1993; 97: 12974-12983.

14.Zahran M, El-Kemary M, Khalifa S, El-Seedi H. Spectral studies of silver nanoparticles biosynthesized by Origanum majorana. Green Process Synth 2017; 7(2): 5-10.

 

15.Gholamreza A, Varshosaz J, Shahbaz N. Synthesis of silver nanoparticle using Portulaca oleracea L. extracts. Nanomed J. 2014; 1(2): 94-99.

16.Sahu K, Gupta PK. Review on Bauhinia variegata linn. Int Res J Pharm. 2012; 3(3): 48–51.

17.Lila MA. Anthocyanins and human health: an in vitro investigative approach. J. Biomed Biotechnol. 2004; 2004: 306–313.

18.El-Kemary M, Zahran M, Khalifa SAM, El-Seedi, HR. Spectral characterisation of  the silver nanoparticles biosynthesised using Ambrosia maritima plant. Micro Nano Lett. 2016; 11(1):311-314.

19.McShan D, Paresh CR, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014; 22(1): 116-117.

20.Fishman MC. Zebrafish genetics: the enigma of arrival. Proc Natl Acad Sci U S A. 1999; 96(19): 10554-1056.

21.Perez RMG, Vargas R, Perez GS, Zavala S. Antiurolithiatic activity of  Eysenhardtia polystachya aqueous extract on rats. Phytoter Res. 1998; 12: 144-145.

22.Burns DT, Dalgarno BG, Ggargan P, Grimshaw J. An isoflavone and a coumestan from Eysenhardtia polystachya Robert boyle's fluorescent acid-base indicator. Phytochemistry 1984; 3(1): 167-169.

23.Alvarez L, Rios MY, Esquivel C, Chavez MI, Delgado G, Aguilar G. Cytotoxic isoflavans from ysenhardtia polystachya. J Nat Prod. 1999; 61(6): 767-770.

24.Perez RMG, Baez EG. Evaluation of hypoglycemic, antioxidant and antiglycating activities of the Eysenhardtia polystachya. Pharmcog Mag 2014;(Supplement 2)10: S404-S418.

25.Perez RMG, Campoy AHG, Ramírez AM. Properties of flavonoids isolated from the bark of Eysenhardtia polystachya, and their effect on oxidative stress in streptozotocin-induced diabetes mellitus in mice. Oxid Med Cell Longev. 2016; 2016:9156510.

26.Perez RMG, Campoy AHG, Flores JMM. Dihydrochalcones from the bark of Eysenhardtia polystachya inhibit formation of advanced glycation and products at multiple stages in vitro studies. J Pharm Pharmacol. 2017; 1(3): 3-23.

27.Hang L, Zhao J, Chen J, Zhu L, Wang D, Jiang L, Yand D, Zhao Z. Diterpenoids from aerial part of Flickingeria fimbriata and their nuclear factor-kappaB inhibitory activities. Phyrtochemistry. 2015; 117: 400-409.

28.Ahmed S1, Ahmad M1, Swami BL1, Ikram S1. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016; 7(1): 17-28.

29.Lee JH, Ki J. Effect of cubic phase nanoparticle on obesity-suppressing efficacy of herbal extracts. Biotechnol Bioprocess Engin. 2015; 20: 1005-1015.

30.Nayak D, Minz AP, Ashe S, Rauta PR, Kumari M, Chopra P, Nayak B. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci. 2016; 470: 142-152.

31.Nasiriboroumand M, Montazer M, Barani H. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. J Photochem Photobiol B. 2018; 179: 98-104.

32.Saravanakumar K, Wang MH. Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb Pathog. 2017; 114: 269-273.

33.Suvakanta D, Padala NM, Lilakanta N, Prasanta C. Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharma- Drug Res. 2010; 67(3): 217-23.

34.Hu R, Bai H, Liu F, Wu Y, XIE X, Hu L. Anti-proliferative and apoptotic effects of S1, a tetrandrine derivative, in human gastric cancer BGC-823 cells. Chin J Nat Med. 2016; 14(7):527-533.

35.Gleeson M, Connaughton V, Arneson LS. Induction of hyperglycaemia in zebrafish Danio rerio) leads to morphological changes in the retina. Acta Diabetol. 2007; 44(4): 157–163.

36.Mugoni V, Camporeale A, Santoro MM. Analysis of oxidative stress in zebrafish embryos. J Vis Exp. 2014; (89): e51328.

37.Bradford MM. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-254.

38.Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by  thiobarbituric acid reaction. Anal Biochem. 1979; 95: 351–358.

39.Maybry TJ, Markham KR, Thomas MB. The ultraviolet spectra of flavones and flavonols. The systematic identification of flavonoids. Springer Berlin Heidelberg. 1970; 41-164.

40.Velgosova O, Mrazikova A. Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles. 2017; AIP Conference Proceedings 1918, 020004.

41.Dash S, Murthy PN, Nath L, Chowdhury P.  Kinetic modeling on drug release from    controlled drug delivery systems. Acta Pol Pharm Drug Res. 2010; 67(3): 217-223.

42.Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drug dispersed in solid matrices. J Pharm Sci. 1963; 52 (12): 1145-1149.

43.Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA. Mechanism of release from porous hydrophilic polymers. Int J Pharm. 1983; 15 (1): 25–35.

44.Ritger P, Peppas N. A simple equation for description of solute release I. Fickian  and non-Fickian release from non-swellable device in the form of slabs, spheres, cylinders or discs. J Control Release. 1987; 5 (1): 23-26.

45.Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using  plants extract and analysis of their antimicrobial property. J Saudi Chem Soc. 2015; 19(3): 311–317.

46.Kim JY, Hong JH, Jung HK, Jeong YS, Cho KH. Grape skin and loquat leaf extracts and acai puree have potent anti-atherosclerotic and anti-diabetic activity in vitro and in vivo in hypercholesterolemic zebrafish. Int J Mol Med. 2012; 30(3): 606– 614.

47.Perez-Gutierrez RM. Review: The potential of chalcones as a source of drugs. African J Pharm harma. 2015; 9(34): 861–874.

48.Kuppusamy P Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J. 2016; 24(4): 473–484.

49.Kayalvizhi K, RavikumarS, Venkatachalam P. Green synthesis of metallic silver nanoparticles using Curculigo orchioides rhizome extracts and evaluation of its antibacterial, larvicidal, and anticancer activity. J Environ Eng. 2016; 142(9): C4016002.

50.Dipankar C, Murugan S. The green synthesis, characterization and evaluation of  the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Coll Surf B Biointerfaces 2012; 98(4): 112–119.

51.Johnson P, Krishnan V, Loganathan C, Govindhan K, Raji V, Sakayanathan P, Vijayan S, Sathishkumar P, Palvannan T.  Rapid biosynthesis of Bauhinia variegata flower extract mediated silver nanoparticles: an effective antioxidant scavenger and α-amylase inhibitor. Artificial Cells Nanomed Biotech. 2017; Epub ahead of print.

52.El-Kemary M, Zahran M, Khalifa SAM, El-Seedi HR. Spectral characterisation of the Silver anoparticles biosynthesised using Ambrosia maritima plant. Micro and Nano Letters. (2016). 11(6): 311–314.

53.Patil Shriniwas P, Kumbhar Subhash T. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem Biophys Report. 2017; 10: 76-81.

54.Geetha N, Geetha TS, Manonmani P, Thiyagarajan M. Green synthesis of silver nanoparticles using Cymbopogan citratus (Dc) Stapf. Extract and Its Antibacterial Activity. Australian J Basic and App Sci. 2014; 8(3): 324-331.

55.Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford University Press, Oxford. 2015; https://doi.org/10.1093/ acprof:oso/9780198717478.001.0001

56.Afifi M, Saddick S, Abu Zinada OA. Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci. 2016; 23(6): 754–760.

57.Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S. Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci Total Environ. 2003; 309(1-3): 105-115.