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ABSTRACT
Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and 
pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced 
phase separation (TIPS) technique. 
Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin 
nanoparticles (GEL NPs) and assessed using scanning electron microscopy and Fourier-transform infrared 
spectroscopy (FTIR). The effects of various coatings on the scaffold characterizations, proliferation, and 
mineralization of MG-63 osteoblast-like cells were evaluated.
Results: The size of the prepared BG and GEL NPs was estimated to be 400 and 234 nanometers, respectively. 
The porosity and contact angle of PCL/CH/GEL NPs/BG was 74% and 72°, respectively. Weight loss and 
electron microscopy evaluations indicated the improved degradation rate of the scaffolds and spreading 
tendency of the cells on the scaffolds when modified as compared to the scaffolds that were purely obtained 
from PCL. In addition, the in-vitro studies revealed that the MG-63 cells cultured on the PCL/CH/GEL 
NPs/BG scaffolds showed improved cell proliferation more significantly compared to the scaffolds obtained 
from PCL, PCL/CH/GEL NPs, PCL/CH, and PCL/GEL NPs. Mechanical examinations also showed that 
PCL/CH/GEL/BG scaffolds had the highest mechanical strength compared to other groups (i.e., 4.66 Mpa). 
Cell viability was estimated to be 96.7%, and the alizarin red test indicated the significant improvement of 
mineralization in the PCL/CH/GEL NP group. 
Conclusion: According to the results, the PCL scaffolds that were modified by CH/GEL NPs/BG had the high 
potency to be used as bone tissue engineering scaffolds.
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INTRODUCTION
Tissue engineering provides methods to 

combine biodegradable and biocompatible 
scaffolds with cells and bioactive agents in order 
to replace defective and damaged tissues [1]. An 
essential requirement for a scaffold, particularly in 

bone tissue engineering, is the proper and well-
regulated interconnected porosity, so that cells 
could grow with appropriate physical shapes, while 
assisting the vascularization of primary tissues [2, 
3]. Thermally induced phase separation (TIPS) is 
often applied to fabricate such a structure [4]. In 
this technique, a homogeneous multicomponent 
system becomes thermodynamically unstable 
under defined circumstances so as to be divided 
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into two distinct phases [5]. Following that, the 
dissolved polymer is observed in a polymer-
rich phase and polymer-lean phase. After the 
removal of the solvent, the polymer-rich phase is 
converted into porous scaffolds with appropriate 
pore geometry and interconnectivity [6, 7]. 

Numerous natural and synthetized 
components are currently available for tissue 
engineering, including  gelatin, collagen, cellulose, 
poly(ε-caprolactone) (PCL), poly(L-lactic acid) 
(PLLA), and poly(lactide-co-glycolide) (PLGA) 
[8, 9]. Among these methods, PCL has gained 
remarkable attention since it has been approved 
by the United States Food and Drug Administration 
(FDA). The polymer is flexible, biocompatible, and 
biodegradable, offering with proper mechanical 
and toxicity properties [10]. 

To provide scaffolds with desirable properties, 
scaffold coating could be used effectively 
and frequently [11]. For instance, the surface 
modification of synthetic scaffolds with PCL has 
been widely adopted to improve cell adhesion [12, 
13]. 

This technology has been widely applied 
in tissue engineering owing to its interesting 
properties, such as biological origin, biodegradability, 
biocompatibility, cost-efficiency, and availability. 

Chitosan (CH) is a biocompatible and 
biodegradable polysaccharide [14], and gelatin 
(GEL) is an economical biodegradable protein 
with wide applications in food, cosmetics, 
and pharmaceutical industries [15, 16]. These 
compounds have a wide range of applications in 
tissue engineering. GEL has notable features of 
collagen without its immunogenicity and pathogen 
transmission potency [17]. 

Recently, bioactive glasses (BGs) have been 
utilized as glass-ceramic biomaterials with surface 
reactivity and investigated in bone repairing 
scaffolds [18]. These compounds play a key role in 
the binding of the scaffold with the surrounding 
tissues. Furthermore, they stimulate angiogenesis 
and release ions that activate the expression of 
osteogenic genes [19]. 

The present study aimed to fabricate porous 
PCL scaffolds coated with GEL nanoparticles (NPs), 
CH, and BG using the TIPS method and evaluate 
the effects of various coatings on the attachment, 
morphology, proliferation, and mineralization of 
MG-63 osteoblast-like cells. To the best of our 
knowledge, no prior studies have been focused on 
the effects of these coatings on PCL scaffolds.

MATERIALS AND METHODS
In this study, PCL (molecular weight: 80,000-

90,000 g/mol, Sigma Aldrich, USA), GEL (type B, 
obtained from bovine skin, Sigma Aldrich, USA), 
sodium hydroxide, CH (molecular weight: 7 kD, 
degree of deacetylation≥80%, Zheugzhou Sigma, 
China), and BG 45S5 (Mod Zist Samaneh Pishro 
Co., Iran) were used for the preparation of the 
composites. The MG-63 cell line was provided by 
Pasteur institute of Iran (Tehran, Iran). In addition, 
Dulbecco’s modified eagle medium/nutrient F-12 
ham (DMEM/F12) and fetal bovine serum (FBS) 
were purchased from Gibco (USA). Penicillin, 3-(4, 
5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide (MTT), alizarin red staining solution (pH: 
4.2), 1,4-dioxane, and acetic acid were purchased 
from Sigma Aldrich (USA). All the chemicals were 
of an analytical grade and used as received without 
further purification.

Preparation of GEL NPs using the desolvation 
technique 

In this study, GEL NPs were selected for 
their biocompatibility, biodegradability, ability 
to increase cell cohesion and cell reaction, and 
hydrophilic nature. Initially, 50 milligrams of GEL 
was dissolved in five ml of distilled water on a 
stirrer. Following that, the pH of the solution was 
set at less than 6.0 (i.e., isoelectric point) using 
acetic acid, and the solution was quickly injected 
to 15 ml of ethanol at the temperature of 50˚C and 
mixed to form GEL NPs. 

Preparation of PCL scaffolds using the TIPS technique 
At this stage, PCL was dissolved in 1,4-dioxane 

(5% w/v) for four hours, and the solution was 
heated to the temperature of 60 for 30 minutes. 
Afterwards, the solution was quenched rapidly 
to -80°C and preserved for three hours. The 
samples were immediately transferred to a freeze 
dryer with the temperature of -77˚C (Christ, 
Pmma121550, Spain) and preserved for 48 hours 
in order to obtain the scaffolds. 

For the surface functionalizing of PCL, the 
samples were initially immersed in NaOH solution 
(1 M) for 60 minutes so as to yield fiber surfaces 
bearing carboxylic groups. Afterwards, the samples 
were washed with distilled water three times and 
transferred to an oven (40˚C) to be dried. 

Surface modification of the scaffolds
To coat the samples with CH/GEL NPs/BG, they 
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were immersed in dispersions of CH (2% w/v), 
BG (0.2% w/v), and/or GEL NPs for four hours 
(deep coating). Following that, the scaffolds were 
transferred to the freeze drier and preserved at 
the temperature of -80˚C. 

The fabricated samples included PCL, PCL/CH, 
PCL/CH/BG, and PCL/CH/ GEL NPs, PCL/CH/GEL 
NPs/ BG, PCL/GEL NPs/BG, and PCL/GEL NPs. 

Scanning electron microscopy of the PCL scaffolds
After coating with gold for 300 seconds using 

a sputter coater (model: SC7620, Emitech, UK) at 
the accelerating voltage of 20 kV, the morphology 
of the scaffolds was assessed via scanning electron 
microscope (SEM; AIS2100, Seron Technology, 
South Korea).

Fourier-transform Infrared (FTIR) Spectroscopy 
Fourier-transform infrared (FTIR) spectroscopy 

was used to examine surface coating of the PCL 
scaffolds based on the PerkinElmer Spectrum GX 
system (USA).

Size measurement of the NPs
Particle size (d50) was measured via dynamic 

light scattering (DLS) using Scatteroscope I (Qudix, 
Korea). The samples were analyzed freshly with no 
dilution prior to the analysis.

Contact angle measurement
Contact angle was measured using the sessile 

drop method to assess the hydrophilicity of the 
scaffolds (G10, KRUSS, Germany).

Measurement of pH 
The fabricated scaffolds were immersed in 

saline solution (0.9% w/v) with the temperature 
of 37˚C and pH of 6.37 for four weeks (final PCL 
concentration: 3.0% w/v). The pH of the solution 
was measured weekly using InoLab (WTW, 
Germany).

Weight loss measurement
To measure weight loss, 10 milliliters of 

phosphate buffer saline (PBS) was applied to 
immerse the scaffolds. Afterwards, the samples 
were extracted and dried at predetermined 
degradation times. Weight loss was calculated 
using the following equation [20]:  
Weight loss (%)=(W0-W1)/W0×100
where W0 represents the initial weight of the 
samples, and W1 denotes the weight of samples 

when removed from the media. 

Porosity assessment
The scaffolds were cut equally in order to 

assess porosity using the liquid displacement 
method. To this end, 96% ethanol was poured 
into a graduated cylinder, with the initial volume 
recorded. Following that, the scaffolds were 
immersed in ethanol for approximately 10 
minutes, and the new volume was recorded. 
Subsequently, the scaffolds were removed, and 
the volume of ethanol was recorded after the 
removal of the scaffolds as well. The percentage of 
porosity in the samples was determined using the 
following equation [21]: 
Porosity (%) = (V1-V3) / (V2-V3) ×100
where V1 represents the initial volume of ethanol, 
V2 is the recorded volume after the immersion of 
the scaffolds (ethanol filling the pores), and V3 
indicates the volume of ethanol after the removal 
of the scaffolds.

Determination of mechanical properties 
At this stage, the compressive strength of the 

scaffolds was measured using a universal testing 
machine (Koopa, model: UV1) at the crosshead 
speed of 1.3 mm/min. Compressive strength (MPa) 
was determined using the following equation:
Compressive Strength (CS) = F/A

where F is the applied compressive load 
(Newton), and A shows the surface area (mm2) of 
the PCL scaffolds perpendicular to the load axis 
(m2).

Cell culture examination 
Human cell line MG-63 was cultured on a 

medium containing DMEM/F12, 10% v/v FBS, 
streptomycin (100 mg/ml), and penicillin (100 unit/
ml) in a humidified incubator at the temperature 
of 37°C, accompanied by 5% CO2. The scaffolds 
were irradiated by UV for one hour and washed 
with PBS and DMEM/F12 twice. Subsequently, 
5×103 of the third-passage cells were cultured on 
the scaffolds in 96-well plates. After incubation 
for one hour, 0.15 milliliter of the cell culture 
medium containing FBS was added to each well. 
The medium was replaced every 24 hours.

Cell proliferation and viability examinations
After 2-3 days of incubation, MTT assay was 

performed to investigate cell proliferation. To this 
end, 150 microliters of MTT (0.5 mg/ml) was added 
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when the media on the cells was removed from 
each well. Following that, the cells were incubated 
at the temperature of 37°C for four hours.

At the next stage, 100 microliters of dimethyl 
sulfoxide was added to dissolve the purple 
formazan crystals. 

The measured absorption at 570 nanometers 
was recorded by a microplate reader (model: 
Anthos 2020, Biochrom, Germany). It is also 
notable that the blank samples contained 
no scaffolds, and all the measurements were 
performed in triplicate. 

The cell viability rate was determined using the 
following equation: 
Cell viability=570 OD (sample)/ 570 OD (control) × 100

Mineralization 
Alizarin red stain (ARS) is a dye that selectively 

binds to calcium salts and was used to estimate 
the mineral content of the scaffolds in the current 
research. To this end, the scaffolds were initially 
stabilized in one milliliter of formaldehyde for 10 
minutes and stained with one milliliter of 40 mM 
ARS afterwards (pH: 4.1) for 30 minutes.

 Using deionized water, the scaffolds were 
cleaned until the unbound dye was removed. 
Following that, the samples were transferred to 
two-milliliter tubes containing 1.5 milliliters of 
50% acetic acid. 

The scaffolds remained in acetic acid for 18 
hours at room temperature in order to ensure 
that all the bound dye was dissolved. At the next 
stage, 500 microliters of the solubilized stain was 
sucked up into a 1.5-milliliter tube containing 

600 microliters of NaOH (1 M) to adjust the pH 
to 4.1. Afterwards, 200 microliters of the solution 
was moved to a 96-well plate. Absorbance was 
measured at 550 nanometers using a microplate 
spectrophotometer (model: SpectraMax plus 384, 
Molecular Device, USA).

Statistical analyses
Data analysis was performed in GraphPad 

Prism software version 6 (GraphPad Software Inc., 
USA) for the plotting of the graphs and statistical 
analysis.

The obtained data were expressed as mean 
and standard deviation, comparisons were carried 
out using one-way analysis of variance (ANOVA) 
and two-way ANOVA at the significance level of 
P<0.05. Each experiment was repeated at least 
three times. 

RESULTS AND DISCUSSION
Morphology of the scaffolds

The morphology of the scaffolds was evaluated 
using SEM. As is depicted in Fig 1, the PCL scaffolds 
showed a well-defined internal geometry with 
a highly porous structure and appropriate pore 
interconnectivity. The prepared scaffolds had 
variable pore sizes, ranging from several microns 
to a few hundred microns, which were considered 
appropriate for maintaining cellular growth and 
vascularization [22]. 

Decreased cell aggregations that may develop 
along scaffold edges is an additional advantage for 
the large pore sizes obtained in the present study 
[23].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Scanning Electron Microscopy (SEM) Image of Engineered PCL Scaffolds without Coating
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Particle size of bioactive glass 45S5 and GEL NPs
Fig 2 shows the SEM images of the BG used 

in the present study. Particle size was estimated 
using the ImageJ software (400±26.45 nm). The 
results of DLS regarding the GEL NPs are illustrated 
in Fig 3. The particle size (d50) of the GEL NPs was 
estimated at 234 nanometers, which is consistent 
with a previous report on the GEL NPs prepared 
by a two-step desolvation technique, with the size 
calculated to be 252 nanometers [24].

Fig 2. SEM Image of Bioactive Glasses

Fig 3. DLS Results of Gelatin Nanoparticles Prepared Using 
Desolvation Method

FTIR spectroscopy
Fig 4 shows the FTIR spectra of pure PCL 

and PCL scaffolds with various coatings. Several 
characteristic bands of PCL were observed at 
2,852 cm-1 (symmetric -CH2 stretching), 2,921 
cm-1 (asymmetric -CH2), 1,728 cm-1 (carbonyl 
stretching), and 1,182 cm-1 (symmetric C-O-C 
stretching). The IR spectrum of GEL exhibited 
characteristic bands at 3,446 cm-1 (N-H stretching 
of amide bond), 1,640 cm-1 (C=O stretching), 
and 1,543 cm-1 (N-H bending). Similar results 
have been previously reported, such as 2,949 
cm-1 for asymmetric -CH2 stretching, 2,865 cm-1 
for symmetric -CH2 stretching, 1,728 cm-1 for 

carbonyl stretching, and 1,170 cm-1 for symmetric 
C-O-C stretching [25, 26]. Owing to the presence 
of amino (NH2) and hydroxyl (OH) groups on the 
molecular chains of CH and GEL, these polymers 
are eligible for the formation of hydrogen bonds 
with the carbonyl groups of PCL.  

Fig 4. FTIR Analysis of A) Pure PCL, B) PCL/GEL NPs and C) PCL/
CH/GEL NPs/BG

Contact angle measurement
The contact angles of the samples were 

measured before and after surface modification 
(Fig 5). Pure PCL has been observed to be highly 
hydrophobic (~111º) as reported previously [27]. 
In the current research, while the surface coating 
of the PCL scaffolds with CH and GEL decreased 
its hydrophobicity through the amino (NH2) and 
hydroxyl (OH) groups on their molecular chains.

Fig 5. Water Contact Angle of Pure PCL and PCL Coated with 
Various Coatings (*significant differences with pure PCL group; 

P˂0.05)
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In general, the synthetic polymers have a higher 
contact angle compared to natural polymers [28], 
which is considered to be an improper factor for 
cell-scaffold interactions [29].

In the present study, the contact angle of 
pure PCL and PC/CH/GEL NPs was 128º and 80º,  
respectively [30]. Previous studies have elaborated 
on the effect of GEL as a hydrophilic polymer on 
the reduction of the contact angle of fibers [31].

Fig 6. Measurement of pH after 1st Week Showing Effect 
of Various Coatings on pH Value of Solution and Significant 
Differences with Pure PCL Group (*significant differences; 

P˂0.05)

Fig 7. Measurement of pH after 2nd Week Showing Effect 
of Various Coatings on pH Value of Solution and Significant 
Differences with Pure PCL Group (*significant differences; 

P˂0.05)

Changes in pH 
In the current research, changes in pH were 

monitored weekly for four weeks (Figs 6-9). 
Furthermore, changes in the pH value of the 
aqueous medium were measured to assess the 
release of acid residues from the PCL samples. 
Significant pH changes cannot be tolerated by 
cells, thereby causing cytotoxicity. The present 
study was performed in the absence of cells to 
prevent possible changes in pH as a function of 
cell growth [32]. 

According to the obtained results, there 

was small, significant difference between the 
measured values during four weeks (P<0.05). It is 
also notable that the amino groups of CH could act 
as a buffer to slow down the rate of pH increase 
[33]. 

In general, only small changes in pH are 
expected. For instance, in a previous study, PCL 
scaffolds decreased pH from 7.27 to 7.24 within 
five weeks, which is in line with our findings [34].

Fig  8. Measurement of pH after 3rd Week Showing Effect 
of Various Coatings on pH Value of Solution and Significant 
Differences with Pure PCL Group (*significant differences; 

P˂0.05)

Fig 9. Measurement of pH after 4th Week Showing Effect of 
Various Coatings on pH Value of Solution and Significant 
Differences with Pure PCL Group (*significant differences; 

P˂0.05)

Weight loss 
Weight loss measurement was carried out 

for 60 days. During this period, the media were 
refreshed weakly. Every 30 days, the samples 
were removed from the media, rinsed with 
distilled water, and dried under vacuum for weight 
measurement (Fig 10).

According to the obtained results, there was a 
significant difference in weight loss as an indicator 
of degradation rate [35] between the modified 
and unmodified samples. Therefore, it could 
be concluded that the modified samples had 
significantly higher degradation rates compared to 
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pure PCL (P< 0.05).
According to a study regarding the weight loss 

of pure PCL and modified scaffold, weight loss was 
reported to be 12% and 23% 28 days, respectively, 
which is consistent with our findings [36].

Fig 10. Results of Weight Loss Measurement on Days zero, 30, 
and 60 Showing Effect of Various Coatings on Scaffold Weight 
Loss Compared to Pure PCL (*significant differences; P˂0.05)

Porosity 
In the present study, porosity was examined 

using the liquid displacement method (Fig 11). 
The obtained results indicated the porosity of 
>70% in all the samples, which was adequate to 
maintain cell growth and metabolite diffusion in 
the bone marrow stromal cells [37, 38]. Moreover, 
a significant difference (up to 10%) was observed 
between the porosity of pure PCL and the 
modified samples (P<0.05). In another research 
in this regard, CH was reported to decrease the 
porosity of PCL scaffolds by approximately 6% at 
the CH:PCL ratio of 75: 25 [39]. 

Fig 11. Porosity of PCL Scaffolds with and without Various 
Coatings Showing Significant Differences with Pure PCL Group 

(*significant differences; P˂0.05)

Mechanical properties
Compressive test is a common method to 

evaluate the mechanical strength of scaffolds. 
In this approach, the sample is subjected to an 
increasing load until it is crushed. As is shown 
in Fig 12, the scaffolds produced in the present 

study possessed sufficient mechanical properties 
for tissue engineering applications. In addition, 
the mechanical strength of the modified scaffolds 
was higher compared to pure PCL. Nevertheless, 
all the obtained mechanical strength values were 
significantly higher than 2 MPa, which is the 
minimum value required for the bone tissues [40].

Fig 12. Mechanical Strength of Scaffolds as a Function of 
Various Coatings Showing Significant Differences with Pure PCL 

Group (*significant differences; P˂0.05)

Cell viability
For tissue engineering applications, scaffolds 

should meet various criteria, including 
biocompatibility, biodegradability, and ability to 
harbor cells [41]. To examine the biocompatibility 
of the scaffolds in the present study, we used the 
MTT assay (Figs 13 & 14). A significant difference 
was observed between the modified scaffolds 
and pure PCL in this regard (P<0.05).Accordingly, 
the scaffolds that were modified with GEL NPs 
and CH exhibited a relatively higher rate of cell 
proliferation compared to the other groups. 
Similar results have been reported in previous 
studies [33], which could be attributed to the 
increased hydrophilicity of modified scaffolds.

Fig 13. MG63 Cell Viability at 48 Hours as a Function of Coating 
Scaffolds with CH, GEL NPs, and/or Bioactive Glass Showing 

Significant Differences with Pure PCL Group (P˂0.05)

Cells-scaffold interactions
Fig 15 shows the SEM images of the MG-63 cells 

cultured on the scaffolds. The cells on the pure PCL 
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scaffolds had almost spherical morphology with 
poor spreading tendency, which could be due to 
the high hydrophobicity of PCL. It has previously 
been reported that the proliferative capacity of 
cells may be hindered by hydrophobic scaffolds 
[42]. 

In the current research, the coating of the 
scaffolds resulted in improved cell adhesion and 
spreading compared to the pure PCL scaffolds, 
which could be attributed to the improved 
hydrophilicity of the scaffolds [33]. 

Fig 14. MG63 Cell Viability at 72 Hours as a Function of Coating 
Scaffolds with CH, GEL NPs, and/or Bioactive Glass (*significant 

differences; P˂0.05)

Mineralization 
Fig 16 depicts the results of alizarin red 

staining. A significant difference was observed in 
hydroxyapatite deposition between the modified 
samples and pure PCL samples (P<0.05).

Most calcium accumulation was detected in 
the MG-63 cells that were seeded on the PCL/CH/
GEL NPs scaffolds with the highest mineralization 
value (OD: 1.126). 

These findings are in line with a previous study 
on PLLA nanofibers modified with collagen/nano-
hydroxyapatite [43]. 

CONCLUSION
In the present study, we fabricated nanofibrous 

and macroporous GEL-coated scaffolds using the 
TIPS technique. 

TIPS demonstrated favorable control 
on porosity, mechanical properties, pore 
interconnectivity, and pore size in the three-
dimensional scaffolds. Furthermore, our findings 
indicated that the TIPS method is a promising 
technique to produce scaffolds for bone tissue 
engineering. 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig 15. SEM Images of Cell Interaction Studies of MG63 Cell Line on Scaffolds with and without Coating A) PCL/CH/GEL NPs/BG, B) 
PCL/GEL NPs, C) PCL/GEL NPs, D) PCL/CH/BG, E) PCL/GEL NPs/BG, and F) PCL/CH
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According to the results, surface 
functionalization improved the properties of 
the scaffolds, thereby enhancing cell scaffold 
interactions. On the other hand, surface coating 
with CH/GEL NPs/BG yielded better results 
compared to the other samples.
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