Determination of acute toxicity and the effects of sub-acute concentrations of CuO nanoparticles on blood parameters in Rutilus rutilus

Document Type: Research Paper

Authors

1 Department of Fishery, Faculty of Fisheries and Environment, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran

2 Department of Fishery, Faculty of Fisheries and Environment, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran

3 Department of Fishery, Faculty of Fisheries and Environment, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran

10.7508/nmj.2015.03.004

Abstract

Objective(s):
Copper oxidenanoparticles have different industrial applications so it is inevitable that nanoparticulate products finally find their way into aquatic ecosystems. Nevertheless there is little information available about their effects on some of edible fish. The present study aims to determine the acute toxicity and evaluate the effect of two sub-acute concentrations (50 and 70% 96 h LC50) of CuO-NPs on some hematological and biochemical parameters of R. rutilus.
Materials and Methods:
225 healthy specimen of R. rutilus (mean weight 5.52±1.2 g; mean length 6.20±0.2 cm) were transported to the laboratory. In order to prepare the stock solution, CuO-NPs was dispersed in pure water with ultrasonication (50-60 kHz) for 15 min every day before dosing. At first, R. rutilus was exposed to CuO-NPs to determine the lethal concentration (LC50) value. Following acute test, fish were treated with sub-acute concentrations of CuO-NPs (50 and 70% 96 h-LC50 at) with one control group (no CuO-NPs) for a week to determine the changes in the level of some plasma hematological and biochemical parameters.
Results:
The 96 h-LC50 values of CuO-NPs was 2.19±0.003 mg/l. R. rutilus exhibited significantly lower RBC count, Hb and Hct values and a significant increase in the WBC numbers, MCH, MCHC and MCV indices (p<0.05). Low glucose and higher cortisol content in plasma were observed in the fish exposed to CuO nanoparticles than those in control group (p<0.05).
Conclusion:
These alterations indicate R. rutilus sensitivity to CuO-NPs and changes in blood parameters would be a useful tool for measurement early exposure to CuO nanoparticles.

Keywords


1. Adhikari T, Kundu S, Biswas A.K, Tarafdar J.C, Rao A.S. Effect of Copper Oxide Nano Particle on Seed Germination of Selected Crops. J Agri Sci Tech. 2012; 2: 815-823.

2. Biswas P, Wu C.Y. Nanoparticles and the environment. J Air Waste Manag Assoc. 2005; 55(6): 708-746.

3. Isani G, Falcioni M.L, Barucca G, Sekar D, Andreani G, Carpenè E, Falcioni G. Comparative toxicity of CuO nanoparticles and CuSO4 in Rainbow trout. Ecotoxicol Environ Saf. 2013; 97: 40-46. DOI:10.1016/j.ecoenv.2013.07.001.

4. Jammi S, Sakthivel S, Rout L,  Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T.. CuO nanoparticles catalyzed C - N, C - O, and C - S cross-coupling reactions: Scope and mechanism. J organ chem. 2009; 74(5): 1971-1976. DOI: 10.1021/jo8024253.

5. El-Nahhal M, Zourab S. M, Kodeh F.S, Selmane M, Genois I, Babonneau F. Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications. Internat Nano Let. 2012; 2(1): 1-5.

6. Nations, S, Wages M, Cañas J.E, Maul J,  Theodorakis C,  Cobb G. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere. 2011; 83(8): 1053-1061.

7. Ates M, Dugo M.A, Demir V, Arslan Z, Tchounwou P.B.. effect of copper oxide nanoparticles to sheepshead minnow (Cyprinodon variegatus) at different salinities. Digest J Nanomat Biostruct. 2014; 9: 369-377.

8. Chang Y.N, Zhang M, Xia L, Zhang J, Xing G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. 2012; 5(12): 2850-2871..

9. Karthikeyeni S, Siva Vijayakumar T, Vasanth S, Arul Ganesh M.M, Subramanian P. Biosynthesis of Iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. J Acad Indus Res. 2013; 10: 645- 649.

10. Ogundele O, Ihuahi J.A, Omojowo F.S, Bitrus P. Toxicity of linear alkylbenene sulphonate (LAS) detergent, to Clarias gariepinus fingerlings. Pan-American J Aquat Sci. 2005; 273-276.

11. Bahmani M, Kazemi R, Donskaya, P. A comparative study of some hematological features in young reared sturgeons (Acipenser persicus and Huso huso). Fish Physiol Biochem. 2012; 4(2): 135-140.

12. Banaee M, Mirvagefei A, Rafei G, Amiri, B.M. Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. Internation J Environ Res. 2008; 2(2): 189-198.

13. Remyla S.R, Ramesh M, Sajwan K.S, Kumar K.S. Influence of zinc on cadmium induced haematological and biochemical responses in a freshwater teleost fish Catla catla. Fish Physiol Biochem. 2008; 34(2): 169-174.

14. Lucas A. Physical concepts of bioenergetics. Bioenergetics of aquatic animals, Englishth edn. Taylor & Francis, France, 1996.

15. Camargo M.M.P, Fernandes M.N, Martinez C.B.R. How aluminium exposure promotes osmoregulatory disturbances in the neotropical freshwater fish Prochilus lineatus. Aquat toxicol. 2009; 94(1): 40-46. DOI:10.1016/j.aquatox.2009.05.017.

16. David M, Kumar R.S, Mushigeri S.B, Kuri R.C. Blood glucose and glycogen levels as indicators of stress in the freshwater fish, Labeo rohita under fenvalerate intoxication. J Ecotoxicol Environ Monitor. 2005; 15(1): 1-5.

17. Jahanbakhshi A, Baghfalaki M, Imanpour M.R, Nodeh A.J, Shaluei F. Effects of different concentrations of 2-phenoxyethanol on primary and secondary stress responses in persian sturgeon, Acipenser persicus. J Appl Ichthyol. 2012; 29(3): 499-502. DOI: 10.1111/jai.12112.

18. Pickering A.D, Pottinger T.G. Stress responses and diseases response in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiol Biochem. 1989; 7: 253-258. DOI: 10.1007/BF00004714.

19. Köprücü S.Ş, Köprücü K, Ural M.Ş, İspir Ü, Pala M.. Acute toxicity of organophosphorous pesticide diazinon and its effects on behavior and some hematological parameters of fingerling European catfish (Silurus glanis L.). Pest biochem physiol. 2006; 86(2): 99-105.

20. Oliveira Ribeiro C.A, Filipak Neto F, Mela M, Silva P.H, Randi M.A.F, Rabitto I.S, Alves Costa J.R.M, Pelletier E. Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead, and tributyltin chloride. Environ res. 2006; 101(1): 74-80.

21. Hedayati A, Jahanbakhshi A. The effect of water-soluble fraction of diesel oil on some hematological indices in the great sturgeon Huso huso. Fish Physiol Biochem. 2012; 38(6): 1753-1758.

22. Hedayati A, Kolangi H, Jahanbakhshi A, Shaluei F. Evaluation of silver nanoparticles ecotoxicity in silver carp (Hypophthalmicthys molitrix) and goldfish (Carassius auratus). Bul J Vet Med. 2012; 15(3): 172-177. 

23. Shaluei F, Hedayati A, Jahanbakhshi A, Kolangi H, Fotovat M.. Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Hum Experim Toxicol. 2013; 32(12): 1270-1277.

24. Tyler C.R, Lange A, Paull G.C, Katsu Y, Iguchi T. The roach (Rutilus rutilus) as a sentinel for assessing endocrine disruption. Environmental sciences: internat j environ physiol toxicol. 2006;14(5): 235-253.

25. Zhao J, Wang Z, Liu X, Xie X, Zhang K, Xing B.. Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J hazard mater. 2011; 197: 304-310. DOI:10.1016/j.jhazmat.2011.09.094.

26. Shaluei F, Hedayati A, Jahanbakhshi A, Baghfalaki M. Effects of nanometer-sized silver materials on survival response of Caspian roach (Rutilus rutilus caspicus). Toxicol Ind Health. 2012; 3: 207-211.

27. Moosavi M.J and Shamushaki V.A.J. Effect of Sub-Acute Exposure to Nickel on Hematological and Biochemical Indices in Gold Fish (Carassius auratus). J Clin Toxicol. 2015; 3(1): 228-232.

28. Shalaby A.M. Sublethal effects of Heavy metal copper, Cadmium and zinc alone in combinations on enzymes activities of common carp Cyprinus carpio L. Egypt. J. Aquat. Biol., 2000; 4(2): 229-246.

29. Stevens M.L. 1997. Fundamentals of clinical hematology. Saunders Philadelphia, PA.

30. Hesser E.F. Methods for routine fish hematology. The Progressive Fish-Culturist. 1960; 22: 164-171

31. Lee G.R, Foerster J, Lukens J, Paraskevas F, Greer J.P, Rodgers G.M. Wintrobe's clinical hematology 10th. Bethseda, Maryland: Lippincort Williams and Wilkins, 1999.

32. Lee J, Mahendra S, Alvarez PJJ. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano. 2010; 4: 3580–3590.

33. Wang J, Gerlach J.D, Savage N, Cobb G.P. Necessity and approach to integrated nanomaterial legislation and governance. Sci Tot Environ. 2013; 442: 56–62.

34. Di Giulio R.T, Hinton D.E. The toxicology of fishes. 2008; CRC Press.

35. Hedayati A, Kolangi H, Jahanbakhshi A, Shaluei F. Evaluation of silver nanoparticles ecotoxicity in silver carp (hypophthalmicthys molitrix) and goldfish (carassius auratus). Bulg. J. Vet. Med., 2012; 15(3): 172−177.

36. Griffitt R.J, Weil R, Hyndman K.A, Denslow N.D, Powers K, Taylor D, Barber D.S.Exposure to copper nanoparticles causes gill injury and acute lethality inzebrafish (Danio rerio). Environ Sci Technol. 2007; 41: 8178–8186.

37. Das B.K, Das N. Impacts of quicklime (CaO) on the toxicity of copper (CuSO4, 5H(2)O) to fish and fish food organisms. Chemosphere. 2005; 61: 186-191. DOI:10.1016/j.chemosphere.2005.02.064.

38. Richey D, Roseboom D. Acute toxicity of copper to some fishes in high alkalinity water. Illinois state water survey, Urbana,Circular. 1978; 131: 24.

39. Shaluei F, Hedayati A, Jahanbakhshi A, Baghfalaki M. Effects of nanometer-sized silver materials on survival response of Caspian roach (Rutilus rutilus caspicus). Toxicol Ind Health. 2012. DOI: 10.1177/0748233712457445.

40. Kalbassi M.R, Salari-joo H, Johari A. Toxicity of Silver Nanoparticles in Aquatic Ecosystems Salinity the Main Cause in Reducing Toxicity. Iran. J. Toxicol., 2011; 5: 436-443.

41. Hedayati A, Ghaffari Z. Evaluation of the Effects of Exposure to Copper Sulfate on some Eco-physiological Parameters in Silver Carp (Hypophthalmichthys molitrix). Iran. J. Toxicol., 2013; 7(22): 887-893.

42. Haley P.J, Weiser M.G. Erythrocyte volume distribution in rainbow trout. American j vet res. 1985; 46(10): 2210-2212.

43. Laban G, Nies L.F, Turco R.F, Bickham J.W, Sepu´lveda M.S. The effects of silvernanoparticles on fatheadminnow (Pimephales promelas) embryos. Ecotoxicology. 2010; 19: 185–195.

44. Webb N.A,Wood C.M. Physiological analysis of the stress response associated with acute silver nitrate exposure in freshwater rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem. 1998; 17: 579–588.

45. Benna S,Viswaranjan S. Effect of cadmium andmercury on the hematological parameter of the fishCyprinus carpio. Environ Ecol.1987; 5: 726–732.

46. Dick P.T, Dixon D.G. Changes in circulating blood cell levels of rainbow trout, Salmo gairdneri, Richardson, following acute and chronic exposure to copper. J fish biol. 1985; 26(4): 475-481.

47. Khabbazi M, Harsij M, Hedayati A, Gholipoor H, Gerami M,Ghafari H.Effect of CuO nanoparticles on some hematological indices of rainbow trout,Oncorhynchus mykiss and their potential toxicity. Nanomed J. 2015;2(1): 67-73.

48. Thomas S, Egee S. Fish Red Blood Cells: Characteristics and Physiological Role of the Membrane Ion Transporters. Comp Biochem Physiol A Mol Integr Physiol. 1998; 119(1): 79-86.

49. Johansson-Sjöbeck M.L, Larsson A. The effect of cadmium on the hematology and on the activity of δ-aminolevulinic acid dehydratase (ALA-D) in blood and hematopoietic tissues of the flounder, Pleuronectes flesus L. Environ Res. 1978; 17: 191-204.

50. Lavanya S, Ramesh M, Kavitha C, Malarvizhi A. Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere. 2011; 82: 977-985.

51. Ololade I.A, Oginni O. Toxic stress and hematological effects of nickel on African catfish, Clarias gariepinus, fingerlings. J Environ Chem Ecotoxicol. 2010; 2: 014-019.

52. Desai B, Parikh P. Impact of Curzate (fungicide) on Hematological Parameters of Oreochromis mossambicus. Internat J Sci Engineer Res. 2012; 3(7): 1-6.

53. Wepener V, Van Vuren J.H.J, Du Preez H.H. The effect of hexavalent chromium at different pH values on the haematology of Tilapia sparrmanii (Cichlidae). Com Biochem Physiol Part C: Com Pharmacol. 1992;101(2): 375-81.

54. Barton B.A, Iwama G.K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann. Rev. Fish Dis., 1991; 1: 3-26.

55. Agrahari S, Pandey  K.C, Gopal K. Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pesti biochem physiol. 2007; 88(3): 268-272.       

56. Kavitha C, Malarvizhi A, Senthil Kumaran S, Ramesh M. Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food Chemi Toxicol. 2010; 48(10): 2848-2854.

57. Shaw B.J, Al-Bairuty G, Handy R.D. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout (Oncorhynchus mykiss): Physiology and accumulation. Aquat toxicol. 2012; 116: 90-101.

58. Van Der Boon J, Van Den Thillart G.E, Addink A.D. The effects of cortisol administration on intermediarymetabolism in teleost fish. Com Biochem Physiol Part A: Physiol. 1991; 100(1): 47-53.

59. Ramesh M, Saravanan M, Kavitha C. Hormonal responses of the fish, Cyprinus carpio, to environmental lead exposure. African J Biotech. 2009; 8(17): 4154-4158.