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ABSTRAC T
Objective(s): Curcumin, a natural plant product, is commonly known as wonder drug of life, but the 
poor bioavailability of its free form has hindered its clinical development. The aim of the present study 
was to investigate the radioprotective effect of nanocurcumin on survival of mice under whole body X-ray 
irradiation. 
Materials and Methods: The Naval Medical Research Institute (NMRI) mice randomly assigned to separate 
groups and received nanocurcumin via oral gavage at different time points related to irradiation. The 
survival of mice was evaluated daily for 30 days post-irradiation and finally, the LD50/30 was calculated 
using Probit analysis. The 30-day survival curve was plotted using the Kaplan-Meier survival curve and the 
median survival of different subgroups was compared using log-rank test. The P-values less than 0.05 were 
considered significant. 
Results: Our results showed that the administration of oral nanocurcumin could effectively reduce the 
mortality rate in the irradiated mice. Five days pretreatment with nanocurcumin (4 mg/kg/day) induced 
maximum radioprotective effect. The LD50/30 was 7.18 Gray (Gy) (95% confidence interval [CI]: 6.59-7.77) 
and 8.78 Gy (95% CI: 8.14-9.50) for irradiation-only and the optimum nanocurcumin group (pre-irradiation 
group), respectively (dose reduction factor [DRF] = 1.22). Continued administration of nanocurcumin up to 
seven days post-irradiation resulted in no further radioprotection. 
Conclusions: The results obtained in this study confirmed the efficacy of nanocurcumin as a radioprotective 
agent against radiation-induced mortality in mice. The specific characteristics of nanocurcumin, such as 
non-toxicity, edibility, availability, make this phytochemical as a potential radioprotective agent in the 
radiotherapy setting and radiation accidents. Further clinical studies are highly recommended.
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INTRODUCTION
Curcumin, a bioactive and non-toxic 

phytochemical, has long been of interest to 
various scientists due to multiple pharmacological 
functions such as antioxidant, anti-inflammatory, 
anticancer, immunomodulatory, and radiomodulatory 
features [1-4]. The development of herbal 
radiomodulators is of paramount importance 

because of its lower toxicity compared to chemical 
drugs [5-7]. The radioprotective properties of 
herbal and natural antioxidants, such as curcumin, 
have been shown in many studies [8, 9]. Dual 
function of curcumin as a radioprotector in a 
healthy tissue and a radiosensitizer in a tumor 
has led to the development of many promising 
research at different levels from cell to human [3, 
10, 11].

The main barrier for application of curcumin 
in the clinic is its poor bioavailability due to 
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low absorption in the digestive system and 
rapid metabolism [12, 13]. Recent promising 
studies have shown that the use of curcumin 
nanoformulations can lead to improved solubility, 
absorption capability, and bioavailability [13-16].

This study determined the 30-day survival 
of mice under whole body X-ray irradiation after 
administration of nanocurcumin at different 
time points related to irradiation to evaluate the 
radioprotective effect of nanocurcumin.

MATERIALS AND METHODS
Animals and materials

In this experimental study, 190 adult male 
NMRI mice with an approximate age of six to 
eight weeks and a weight range of 25-30 g were 
provided from the Pasteur Institute, Tehran, Iran. 
The mice randomly assigned to separate groups 
within subgroups of 10. All animal experiments 
were conducted in accordance with international 
guidelines, regulations enforced by the institutional 
review board, and the NIH guide for the care and use 
of laboratory animals [17]. The animals were kept 
in an animal lab at the Iran University of Medical 
Sciences for adaptation to the environment 
for 24 hours in a cage without medication 
only by taking water and food under standard 
conditions. The animals were placed under 12:12 
light/dark cycle at 25±2°C. The nanocurcumin 
(SinaCurcumin®) was prepared from Exir Nano 
Sina Company (Tehran, Iran). The drugs were 
dissolved in distilled water and diluted to desired 
concentrations. Then, different concentrations 
of the drugs were administered to mice (0.2 ml/
mouse, by oral gavage, once daily) pre- and/or 
post-irradiation. In the pre-irradiation groups, the 
oral administration included taking drug daily for 
5 days before up to 2 hr pre-irradiation. In post-
irradiation group, drug was orally administered 
daily on the day after irradiation up to 7 days later. 
In pre- and post-irradiation groups, nanocurcumin 
was administered before and after irradiation on 
the basis of both mentioned protocols.

To obtain the LD50/30 for the irradiation-only 
group, a total of 50 mice within subgroups 
of 10 were exposed to X-ray alone without 
nanocurcumin and received the irradiation 
doses of 5, 6, 7, 8, and 9 Gy. In addition, 20 non-
irradiated mice as control group received either 2 
mg/kg or 4 mg/kg of nanocurcumin for 13 days. 
The LD50/30 was determined for different modes of 
nanocurcumin administration on 120 mice divided 

into 4 following groups: 1) Nanocurcumin 4 mg/
kg pre-irradiation; 2) Nanocurcumin 4 mg/kg post-
irradiation; 3) Nanocurcumin 4 mg/kg pre- and 
post-irradiation; 4) Nanocurcumin 2 mg/kg pre- 
and post-irradiation. Each group was exposed to 
the irradiation doses of 7, 8 and 9 Gy within the 
subgroups of 10.

Prescribed amounts of 2 and 4 mg/kg as 
nanocurcumin doses were designated based on 
the manufacturer’s recommendation. 

X-ray irradiation and mortality assessment
In this study, the linear accelerator (Elekta 

Compact) with 6-MeV energy was used to expose 
the mice. The irradiation field was 35×35 cm2. The 
mice were exposed to different doses of radiation 
with a source to sample distance (SSD) of 100 cm. 
The dose rate was 200 cGy/min. After exposing, 
the mice were housed under the same conditions 
to determine the 30-day survival rate. For this 
purpose, the lethality of mice was recorded for 30 
days after exposure.

Dose reduction factor (DRF) calculation
For determination of the DRF as the ratio of 

radioprotection, the groups with and without 
receiving drug were exposed to different 
irradiation doses as mentioned and LD50/30 was 
calculated for various treatment groups. The DRF 
of each treatment group was obtained by dividing 
LD50/30 of that group by LD50/30 of the irradiated 
group without drug as follows [18-20]:
DRF= (LD50/30 of drug groups )/(LD50/30 of the 
irradiation only group).

Statistical analysis
The LD50/30 of different treatmnet groups and 

irradiation-only group was calculated by the 
Probit test and then 95% confidence interval (CI) 
was obtained for each one. The median survival of 
different subgroups was compared using log-rank 
test. The P-values less than 0.05 were considered 
significant. In addition, the 30-day survival curve 
was plotted using the Kaplan-Meier survival curve. 
The statistical analysis was performed using the 
IBM SPSS Statistics for Windows, Version 23.0 
(IBM Corp., Armonk, N.Y., USA).

RESULTS 
The results in irradiation-only subgroups 

showed 100% survival for the mice exposed to 
5Gy irradiation and 100% mortality for the mice 



45Nanomed. J. 6(1): 43-49, winter 2019

R. Sadeghi et al. / Radioprotective role of nanocurcumin in mice mortality

exposed to 9Gy irradiation. There was no significant 
difference in the median 30-day survival between 
the mice exposed to 5, 6, and 7 Gy irradiation and 
non-irradiated control group (p>0.05). The median 
survival of the mice exposed to 8 and 9 Gy showed 
a significant difference with the median survival 
in the control group (p<0.001). The Kaplan-Meier 
curve for the irradiation-only mice is shown in Fig 1.

The 30-day survival of different treatment groups
The median survival and the 30-day survival rate 

of the different treatment subgroups compared 
to corresponding irradiation-only subgroups and 
control mice are shown in Table 1. The treatment 
subgroups exposed to 7Gy irradiation showed 
no significant difference in the survival rate 
comparedwith both the corresponding irradiation- 

 

  

Group 
Median survival, 

Day 
30-day survival rate, 

%  
P-Value compared to 

control 
P-Value compared to 

irradiation-only   

Control (0 Gy) 30 100  .067 

7 Gy irradiation     

Irradiation-only 30 70 .067  

Nanocurcumin  4mg/kg 
Pre-irradiation 

30 100 >.999 .067 

Nanocurcumin 4 mg/kg 
post-irradiation 30 100 >.999 .067 

Nanocurcumin 4 mg/kg 
Pre- and post-irradiation 30 80 .146 .546 

Nanocurcumin 2mg/kg 
Pre- and post-irradiation 30 80 .146 .546 

8 Gy irradiation     

Irradiation-only 16.5 10 < .001  

Nanocurcumin 4 mg/kg 
Pre-irradiation 

30 90 .317 .001 

Nanocurcumin 4 mg/kg 
post-irradiation 

13.5 20 < .001 .579 

Nanocurcumin 4 mg/kg 
Pre- and post-irradiation 

16 40 .004 .541 

Nanocurcumin 2 mg/kg 
Pre- and post-irradiation 

16.5 40 .004 .290 

9 Gy irradiation     

Irradiation- only 5 0 < .001  

Nanocurcumin 4 mg/kg 
Pre-irradiation 

18 30 .001 < .001 

Nanocurcumin 4 mg/kg 
post-irradiation 

14 0 < .001 < .001 

Nanocurcumin 4 mg/kg 
Pre- and post-irradiation 12 0 < .001 < .001 

Nanocurcumin 2 mg/kg 
Pre- and post-irradiation 

16 40 .004 < .001 

Table 1. The survival of different treatment subgroups 
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Fig 1. Kaplan-Meier curve for the irradiated-only mice

only subgroup and the non-exposed control group 
(Table 1).

The 30-day survival rate of the mice in the 
subgroups exposed to 8Gy irradiation varied from 
20% in the subgroup of nanocurcumin 4 mg/
kg post-irradiation up to 90% in the subgroup 
of nanocurcumin 4 mg/kg pre-irradiation. The 
Kaplan-Meier curve for the subgroups exposed to 
8Gy irradiation is shown in Fig 2. Among the mice 
exposed to 8Gy irradiation, only the subgroup of 
nanocurcumin 4 mg/kg pre-irradiation showed 
a significant difference in the mean survival 
compared to the corresponding irradiation-only 
subgroup (Table 1). 

Fig 2. Kaplan-Meier curve for the subgroups exposed to 8Gy 
radiation

In addition, the median survival difference was 
significant between the pre-irradiation subgroup 
and other treatment subgroups exposed to 8Gy 
irradiation (p<0.05). As shown in Table 1, there 

is no statistically significant difference between 
the survival of mice in pre-irradiation subgroup 
and the non-irradiated control group indicating 
an acceptable radioprotection against the lethal 
effects of irradiation at the dose of 8 Gy.

The median survival for all treatment 
subgroups exposed to 9Gy irradiation showed a 
significant difference with the median survival 
in the irradiation-only subgroup exposed to 9Gy 
irradiation (relative radioprotection). However, 
the median survival difference was significant 
between all treatment groups exposed to 9Gy 
irradiation and the non-exposed control group, 
suggesting inadequate radioprotective effect 
against lethal effect of 9Gy irradiation (Table 1).

 No significant difference was observed 
between the two doses of 4 and 2 mg/kg 
administered pre- and post-irradiation in none of 
7, 8 and 9 Gy irradiation doses (p>0.05).

The LD50/30 and DRF
The LD50/30 was obtained to be 7.18 Gy (95% 

CI: 6.59-7.77) for the irradiation-only group. The 
LD50/30 for all treatment groups and DRFs are 
shown in Table 2.

Table 2. The LD50/30 and dose reduction factor for all drug 
groups

The lack of overlap between the LD50/30 95% 
CIs of the pre-irradiation nanocurcumin group and 
the irradiation-only group indicates a significant 
difference between these two groups, suggesting 
proper radioprotection. The overlapping of the 
95% CI values of other treatment groups with 
the irradiation-only group reveals that their 
LD50/30 is not significantly different from that of 
the irradiation-only group, indicating inadequate 
radioprotection.

DISCUSSION
The ionizing radiation through forming free 

 

  

 

 

Group 
 

LD50/30, Gy (95% CI) 
 

Dose reduction factor 
(DRF) 

Irradiation-only 7.18 (6.59 _ 7.77)  

Nanocurcumin 4 mg/kg 
Pre-irradiation 

8.78 (8.14 _ 9.50) 1.22 

Nanocurcumin 4 mg/kg 
Post-irradiation 7.68 (7.01 _ 8.31) 1.06 

Nanocurcumin 4 mg/kg 
Pre- and post-
irradiation 

7.66 (7.03 _ 8.27) 1.06 

Nanocurcumin 2 mg/kg 
Pre- and post-
irradiation 

8.11 (7.55 _ 8.68) 1.12 
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radicals imposes severe damage and death 
of healthy and tumor cells [21, 22]. Since the 
exposure to radiotherapy or to nuclear radiation 
accidents induces unwanted side effects, thus the 
development of radioprotector agents is of great 
importance [8, 9, 19]. Radioprotectors such as 
amifostine are compounds whose administration 
before and even after exposure could reduce 
the damages and deaths caused by ionizing 
radiation [9, 19]. Although amifostine has been 
known as the most effective radioprotector and 
approved by the FDA for use in head and neck 
cancer patients, its clinical application is restricted 
due to serious complications such as nausea, 
vomiting, hypotension and allergic reactions [23-
25]. Additionally, the amifostine cannot be orally 
administred and should be taken intravenously in 
the clinical practice [23]. Therefore, developing 
a non-toxic, inexpensive, and preferably herbal 
radioprotector with oral administration capability 
is one of the research priorities of the scientists 
[19]. Many preclinical laboratory studies have 
been carried out on various herbal radioprotectors 
[5-7]. The curcumin due to its unique properties, 
such as non-toxicity, edibility, and availability 
possesses special functionality for use in clinic [12, 
26, 27].

The concern about the clinical application 
of curcumin is its low absorption capacity and 
bioavailability [12, 13]; its recent nanoscale 
formulation has, however, been able to overcome 
this problem to a great extent [14-16]. Recently, 
several clinical studies on SinaCurcumin®, a novel 
nanomicelle formulation of curcumin, have had 
promising results for the clinical application of 
curcumin [28-30]. In an in vivo study on mice 
to find the pharmacokinetic parameters of 
SinaCurcumin®, the maximum concentration 
(Cmax) value for nanoformulation and free powder 
was 2540.62 and 59.07, respectively. In this study, 
the bioavailability of nanomicelle curcumin was 
estimated to be 59.2 times higher than its free 
form (unpublished data). 

The gold standard method for assessing 
the radioprotective effect of a radioprotector 
and calculating its DRF is to investigate the 30-
day survival in the mice exposed to lethal doses 
of radiation [9, 19, 20]. In a study by Inano and 
Onoda, the curcumin powder administration 
pre- and/or post-irradiation was unable to reduce 
mortality in rats exposed to radiation in spite of 
inhibiting few acute and chronic effects [31]. In 

contrast to the study of Inano and Onoda, the 
use of nanocurcumin formulation in our study 
was able to reduce the mortality rate in the 
mice exposed to lethal irradiation doses. Many 
preclinical studies have been conducted using 
other endpoints to investigate the effect of newly 
developed curcumin formulations. Soltani et al. in 
an in vitro study examined the protective effect of 
nanocurcumin in comparison with its free form 
on human peripheral blood mononuclear cells 
(PBMCs) exposed to gamma ray [32]. They showed 
that the curcumin nanoformulation significantly 
reduced the DNA damage and lipid peroxidation 
caused by exposure to irradiation in comparison 
with the free curcumin group. In an in vivo study 
by Shi et al., the radioprotective effect of liposomal 
curcumin against pulmonary complications, 
including pneumonia and pulmonary fibrosis, as 
well as its sensitizing effect on lung tumor cells 
were simultaneously shown [33]. They injected  
the liposomal curcumin (5 mg/kg) to mice 
systemically for 7 days. The mechanism underlying 
the radioprotective effects was reported to be 
inhibition of nuclear factor-κB pathway and 
reduced expression of inflammatory factors 
including tumor necrosis factor-α, interleukin (IL)-
6 and IL-8.

There is currently no comprehensive agreement 
on the time when a radioprotector is administered 
for exposure (i.e. before or after irradiation, or 
both before and after exposure). Okunieff et al. 
investigated the protective effect of curcumin 
against acute and chronic radiation-induced skin 
damage in the mice administered 5 days pre- and/
or post-irradiation [34]. The curcumin taken pre- 
and post-irradiation showed no increase in the 
radioprotection of the skin compared to either 
pre- or post-irradiation groups. In our study, the 
prolongation of nanocurcumin administration by 
a week after exposure at the radiation dose of 8 
Gy X-ray resulted in a significant reduction in 30-
day survival. Further studies are needed to explain 
the cause of this reduced protective effect. Lethal 
doses of radiation make the mice particularly 
weak and sensitive. Perhaps the damage caused 
by the repeated intragastric gavage up to 7 days 
post-irradiation in the vulnerable mice can be a 
possible explanation for this observation.

Improving the efficiency of a radioprotector 
as a result of its combination with another 
radioprotector has been shown in various studies 
[35-39]. Some studies have also reported the 
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synergistic effect of curcumin in combination with 
other anticancer drugs such as cisplatin [40-42]. 
The radioprotective effect of nanocurcumin in 
combination with other proper phytochemicals 
such as resveratrol and quercetin remains to be 
determined. 

Various mechanisms have been proposed for 
the radioprotective effect of curcumin. Curcumin is 
a potent antioxidant that, in addition to scavenging 
the free radicals, exerts its protective mechanism 
through enhancing the expression of antioxidant 
enzymes [43-45]. In addition, curcumin can result 
in reduced DNA damage and inhibit transcription 
of genes involved in the inflammatory responses 
[46]. 

CONCLUSION
The oral nanocurcumin administration before 

irradiation significantly reduced mortality rate 
in the exposed mice. The distinguished features 
of nanocurcumin, such as non-toxicity, edibility, 
and availability make this herbal product a 
promising radioprotector for use in radiotherapy 
and radiation accidents. In the light of the recent 
clinical studies on nanocurcumin [28-30, 47], 
further extensive trials are needed to confirm the 
clinical properties of the nanocurcumin.
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