Study of magnetic and structural and optical properties of Zn doped Fe$_3$O$_4$ nanoparticles synthesized by co-precipitation method for biomedical application

Zahra Rezay Marand1,2*, Mitra Helmi Rashid Farimani1,2, Nasser Shahtahmasebi1,2

1Department of physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2Nanoscience Center, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Objective(s): This paper describes synthesizing of magnetic nanocomposite with co-precipitation method.
Materials and Methods: Magnetic Zn$_x$Fe$_3$O$_4$ nanoparticles with 0-14% zinc doping ($x=0, 0.025, 0.05, 0.075, 0.1$ and 0.125) were successfully synthesized by co-precipitation method. The prepared zinc-doped Fe$_3$O$_4$ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and UV-Vis spectroscopy.
Results: results obtained from X-ray diffraction pattern have revealed the formation of single phase nanoparticles with cubic inverse spinal structures which size varies from 11.13 to 12.81 nm. The prepared nanoparticles have also possessed superparamagnetic properties at room temperature and high level of saturation magnetization with the maximum level of 74.60 emu/g for $x=0.075$. M_s changing in pure magnetite nanoparticles after impurities addition were explained based on two factors of “particles size” and “exchange interactions”. Optical studies results revealed that band gaps in all Zn-doped NPs are higher than pure Fe$_3$O$_4$. As doping percent increases, band gap value decreases from 1.26 eV to 0.43 eV.
Conclusion: these magnetic nanocomposite structures since having superparamagnetic property offer a high potential for biosensing and biomedical application.

Keywords: Biomedical application, Fe$_3$O$_4$ nanoparticles, Saturation magnetization, Superparamagnetism, Zn-doping

*Corresponding Author: Zahra rezay marand, Department of physics, faculty of science, Ferdowsi University of Mashhad, Mashhad, Iran.
Tel: +989125128605, Email: Zahra.rezaim.88@gmail.com
Properties of Zn doped Fe$_3$O$_4$ nanoparticles

Introduction
During the last decade, nanosize magnetic materials have been largely studied due to their different magnetic properties compared to their bulk counterparts such as super-paramagnetism which can significantly advance the current clinical diagnostic and therapeutic methods (1). Each superparamagnetic particle is a single magnetic domain in which thermal energy ($K_B T$) can overcome anisotropy energy barrier and cause free spin reversal. This is to say that no residual magnetism remains after elimination of external magnetic field.

In this regard, spinel ferrite nanocrystals with general chemical composition MFe$_2$O$_4$ (M= Co, Ni, Mn, Fe, Cu, Zn, etc.) form a group of applicable magnetic materials due to their interesting magnetic, magneto-resistive and magneto-optical properties (2). Among these materials, Fe$_3$O$_4$ or magnetite has attracted the most attention due to its unique magnetic and biomedical properties. Fe$_3$O$_4$ nanoparticles (NPs) offer a high potential of applications in many industrial and biological fields such as magnetic storage media, ferrofluids, magnetic refrigeration, detoxification of biological fluids, magnetic cell separation, contrast agents in magnetic imaging (MRI), targeted drug delivery and hyperthermia treatment (3).

Magnetite with Fd3m space group has cubic inverse spinel structure in which oxygen anions have formed an fcc close packed structure and Fe cations have occupied interstitial tetrahedral and octahedral sites (4,5). In this structure, half of the Fe$^{3+}$ ions are arranged in tetrahedral sites and the remaining half accompanied with all Fe$^{2+}$ ions are arranged in octahedral sites. Based on the past reports, we might conclude that replacing Fe ions in interstitial sites with different metal ions such as Zn, Mn, Ga, Ni, Co and Cu will improve Fe$_3$O$_4$ unique physical properties originating from electron hopping between Fe$^{2+}$ and Fe$^{3+}$ ions (6-9). Up to date, many approaches including thermal decomposition, microemulsion, hydrothermal, solvothermal, sonochemical, microwave assisted and co-precipitation have been developed for the preparation of Fe$_3$O$_4$ NPs (10). Among these methods, co-precipitation is most commonly method due to its advantages such as simple and cheap synthetic process, high yield product with superior magnetic and crystal properties and using inorganic reactant (11). In this research, at first, co-precipitation method has been used for synthesizing a set of Fe$_3$O$_4$ nanoparticles doped with Zn, represented as Zn$_x$Fe$_{3-x}$O$_4$ (x=0-0.125), and then to investigate impurity effects on pure Fe$_3$O$_4$ NPs, we studied structural, magnetic and optical properties of samples by different characterization techniques.

Materials and Methods

Materials
Ferrous chloride tetrahydrate (FeCl$_2$.4H$_2$O), Ferric chloride hexahydrate (FeCl$_3$.6H$_2$O), Zinc chloride (ZnCl$_2$), hydrochloric acid (HCl), ammonium hydroxide (NH$_4$OH) and ethanol were purchased from Merck Co, and used without further purification. Deionized water was used at all experiment stages. Deionized water had been deoxygenated by bubbling N$_2$ gas.

Preparation of Fe$_3$O$_4$ nanoparticles
Fe$_3$O$_4$ nanoparticles doped with different amounts of Zinc demonstrated as Zn$_x$Fe$_{3-x}$O$_4$ (x= 0, 0.025, 0.05, 0.075, 0.1 and 0.125) series were synthesized using chemical co-precipitation method. The typical procedure is as follows: mentioned materials is produced. Then, NH$_4$OH solution (2 M, alkali source) in drops was added to the initial solution by vigorous magnetic stirring at 70°C. During this operation, the initial orange color of the solution turned to black as a result of magnetite NPs formation. After heating (for crystallizing structures), the resultant magnetic precipitate was collected by applying an external magnetic field. Having been washed with ethanol and
water, it was dried under vacuum. It is worth mentioning that all main synthesis steps were performed under N\textsubscript{2} gas protection to create an oxygen-free atmosphere and prevent oxidation of divalent iron salts. Transmission electron microscope (TEM, LEO 912 AB) and Fourier transform infrared (FTIR) spectrophotometer (Avatar-370-FTIR Ther-monicol) were also employed to characterization of Zn-doped Fe\textsubscript{3}O\textsubscript{4} nanoparticles. Magnetic measurements were carried out at room temperature by means of vibrating sample magnetometer (VSM). The UV-Vis absorption spectra of the nano-particles were measured by a UV-Vis spectrometer (LABOMET- 4057 UV-Vis).

Characterization

The phase purity and crystal structure of the samples were investigated using Philips PW1800 X-ray diffractometer (XRD) with Cu-K\textsubscript{α} radiation (\(\lambda = 0.154\) nm) and 0.04 degree step size.

Results and Discussion

Morphology and structure studies of the synthesized samples

Figure 1 demonstrates the XRD pattern of magnetite NPs doped with different amounts of Zn\textsubscript{2+} (\(x = 0\)-0.125). As revealed, diffraction peaks of all samples completely correspond to standard pattern characteristic peaks of the magnetite cubic inverse spinel structure (JCPDS 19-0629). No secondary phase is detected to prove the formation of other Zn-based structures such as ZnO. So, we might conclude that Fe\textsubscript{3}O\textsubscript{4} has been formed with high phase purity and Fe ions have been successfully replaced with Zn2+ ions.

To investigate effects of Zn doping on Fe\textsubscript{3}O\textsubscript{4} NPs structural characteristics, Debye-Scherrer formula (Eq. (1)) was used for calculating average crystalline size:

\[
D_{\text{XRD}} = \frac{k \lambda}{\beta \cos \theta}
\]

(1)

Where \(\lambda\) is the incident X-ray wavelength (1.54), \(\theta\) is the Bragg diffraction angle, \(\beta\) (FWHM) is the radian-based full width at half-maximum and \(K\) is the grain shape factor (0.94) (12).

The average lattice constant value is calculated by Eq. (2) that is related to cubic structures:

\[
a = d_{hkl} \left[h^2 + k^2 + l^2 \right]^{1/2}
\]

(2)

Where; \(l, k\) and \(h\) are Miller indexes and \(d_{hkl}\) is the distance between crystal planes (\(d_{hkl} = \frac{\lambda}{2 \sin \theta}\)) (13). Then, Williamson-Hale diagram (Eq. (3)) was implemented for estimating the amount of micro strain in crystal lattice (\(\varepsilon\)) (14):

\[
\beta \cos \theta = k \lambda / D + 4 \varepsilon \sin \theta
\]

(3)

As shown in Figure 2 and Table 1 peak shift has occurred toward smaller angles in all Zn\textsubscript{x}Fe\textsubscript{3-x}O\textsubscript{4} NPs, which has increased the distances between planes (311) and lattice constant. This is mainly due to the large zinc ionic radius (74pm) compared to that of iron (64pm), which is predicted to expand crystal lattice (7), \(\varepsilon\) changes confirm this claim. Having replaced Zn in crystal lattice, \(\varepsilon\) value grew from minus value (indicating a contracting tension in pure Fe\textsubscript{3}O\textsubscript{4} lattice \(x=0\)) to a positive value (indicating an expansive tension).
Properties of Zn doped Fe₃O₄ nanoparticles

Table 1. The obtained structural parameters of XRD analysis for (311) peak.

<table>
<thead>
<tr>
<th>sample</th>
<th>2θ (°)</th>
<th>FWHM (°)</th>
<th>(D_{\text{XRD}}) (nm)</th>
<th>(d_{\text{ab}}) (Å°)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0</td>
<td>35.61</td>
<td>0.689</td>
<td>12.65</td>
<td>8.324</td>
<td>-2.19 × 10⁴</td>
</tr>
<tr>
<td>x=0.025</td>
<td>35.46</td>
<td>0.788</td>
<td>11.13</td>
<td>8.382</td>
<td>+2.32 × 10³</td>
</tr>
<tr>
<td>x=0.05</td>
<td>35.45</td>
<td>0.720</td>
<td>12.16</td>
<td>8.390</td>
<td>+9.28 × 10⁴</td>
</tr>
<tr>
<td>x=0.075</td>
<td>35.39</td>
<td>0.684</td>
<td>12.81</td>
<td>8.401</td>
<td>+1.04 × 10³</td>
</tr>
<tr>
<td>x=0.1</td>
<td>35.44</td>
<td>0.698</td>
<td>12.58</td>
<td>8.390</td>
<td>+4.75 × 10³</td>
</tr>
<tr>
<td>x=0.125</td>
<td>35.43</td>
<td>0.697</td>
<td>12.58</td>
<td>8.393</td>
<td>+1.63 × 10³</td>
</tr>
</tbody>
</table>

In addition to peak shift, doping has influenced and decreased diffraction peaks intensity Figure 2. That is to say that doping can decrease crystal order of Fe₃O₄ nanoparticles.

ZnₓFe₃₋ₓO₄ nanoparticles TEM images with different Zn values are shown in Figure 3. As demonstrated, pure Fe₃O₄ nanoparticles have spherical shape and 5-25 nm size distribution with an average size of 14.29 nm. As Zn doping increases, Fe₃O₄ nanoparticles spherical morphology remains constant but their sizes change (Table 2). These changes trend corresponds to the results obtained from XRD analysis.

Magnetic properties analysis

To study synthesized NPs magnetic properties, magnetic measurements were performed at 300K temperature using VSM technique and \(M-H\) curves (magnetization changes due to applied external magnetic field) were depicted (Figure 4).

Based on the depicted curves, related data of initial magnetic susceptibility (\(\chi_i\)), saturation magnetization (\(M_s\)), coercivity field (\(H_c\)) and remnant magnetization (\(M_r\)) were calculated as nanoparticles magnetic characteristics. Obtained results have been demonstrated in Table 3. The obtained results reveal that pure Fe₃O₄ NPs and Zn-doped Fe₃O₄ NPs are super-paramagnetic at room temperature since their remanence (magnetization value at zero field) and coercivity (the field strength required to bring the material back to zero magnetization) is negligible in absence of an external magnetic field (inset in Figure 4). That is to say that each particle is a single magnetic domain and thermal energy can overcome anisotropy energy barrier for spin reversal (15).

One of the parameters calculable by magnetization curves is magnetic particle’s size or magnetic domain size which is calculated using Eq. (4):

\[
D_m = \left[\frac{18k_BT/\rho \times \gamma_i}{M_s^2}\right]^{1/3}
\]

(4)

Where; \(\rho\) is Fe₃O₄ particles density (5.18 g/cm³), \(k_B\) is the Boltzmann constant and \(T\) is the absolute temperature (300K) (16).

As demonstrated in Table 3, particles size calculated by Eq.(4), is smaller than that calculated by TEM technique (Table 2). This difference is attributed to presence of the canted spins in the surface layers due to decrease in the exchange coupling, which leads to magnetically dead surface layers formation (5).

One of the important effects of doping on magnetite NPs magnetic properties is saturation magnetization change (\(M_s\)) whose trend is shown in Figure 5. To demonstrate \(M_s\) change more conspicuously, magnetization curves have been normalized in \(H \geq 0\) range using \(M_s\) value at \(x=0\) (70 emu/g).
Figure 3. TEM images with size distribution histograms of Zn$_x$Fe$_{3-x}$O$_4$ NPs with (a) x=0, (b) x=0.025, (c) x=0.05, (d) x=0.075 and (e) x=0.125.
Two factors can explain the above-mentioned change:

1. The first factor is the particles magnetic properties dependency on their size. With decrease in particles size, because of increase of their surface to volume ratio, the contribution to the magnetism of the NPs from the dead surface layers would be more than from inside part, which has ferro-magnetic ordering. So due to dominant role of the dead surface layers in the particle total magnetic property, the smaller the particle size, the less the saturation magnetization (16).

2. The second factor is the doping effect on the ion occupation status in tetrahedral (A) and octahedral (B) sites and consequently on exchange interactions in magnetite. In this regard, recent studies have revealed that doping replaces Fe$^{3+}$ ions with Zn$^{2+}$ in A-site but no Zn$^{2+}$ doping occurs in B-site (8, 9). So, it might be predicted that when Fe$^{3+}$ ions are replaced with Zn$^{2+}$ in A-site, the same number of Fe$^{2+}$ ions are turned into Fe$^{3+}$ ions through electron emission to retrieve crystal electric neutrality. In this case, M_s value varies according to resultant Fe$^{3+}$ ions spin direction in B-site (7). Generally, co-occurrence of two indirect exchange interactions in pure Fe$_3$O$_4$ (superexchange interaction between Fe$^{3+}$ ions in tetrahedral and octahedral sites and double exchange interaction between Fe$^{3+}$ and Fe$^{2+}$ ions in octahedral sites) leads to antiferromagnetic orientation of tetrahedral and octahedral magnetic sub-lattice while each sub-lattice’s internal magnetic arrangement is ferromagnetic. Due to this magnetic arrangement, magnetic shares of Fe$^{3+}$ ions in A and B sites neutralize each other and only unpaired moments of Fe$^{2+}$ ions in B-site determine the total magnetization (17). As Zn doping is added to the structure, Zn doping percent is initially low. So, Fe$^{2+}$ ions are turned to Fe$^{3+}$ ions, keeping their initial spin orientation. This leads to initial increase of M_s value. As Zn value increases, superexchange interac-tions overcome double exchange intera-ctions and a number of the obtained Fe$^{3+}$ ions are arranged in an anti-parallel orientation to the other B-site ions. This orientation decreases M_s value (7). Consequently, simultaneous effect of the mentioned

<table>
<thead>
<tr>
<th>Sample</th>
<th>$X=0$</th>
<th>$X=0.025$</th>
<th>$X=0.05$</th>
<th>$X=0.075$</th>
<th>$X=0.125$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{TEM} (nm)</td>
<td>14.92</td>
<td>11.37</td>
<td>12.28</td>
<td>14.53</td>
<td>14.18</td>
</tr>
</tbody>
</table>

Two factors can explain the above-mentioned change:

1. The first factor is the particles magnetic properties dependency on their size. With decrease in particles size, because of increase of their surface to volume ratio, the contribution to the magnetism of the NPs from the dead surface layers would be more than from inside part, which has ferro-magnetic ordering. So due to dominant role of the dead surface layers in the particle total magnetic property, the smaller the particle size, the less the saturation magnetization (16).

2. The second factor is the doping effect on the ion occupation status in tetrahedral (A) and octahedral (B) sites and consequently on exchange interactions in magnetite. In this regard, recent studies have revealed that doping replaces Fe$^{3+}$ ions with Zn$^{2+}$ in A-site but no Zn$^{2+}$ doping occurs in B-site (8, 9). So, it might be predicted that when Fe$^{3+}$ ions are replaced with Zn$^{2+}$ in A-site, the same number of Fe$^{2+}$ ions are turned into Fe$^{3+}$ ions through electron emission to retrieve crystal electric neutrality. In this case, M_s value varies according to resultant Fe$^{3+}$ ions spin direction in B-site (7). Generally, co-occurrence of two indirect exchange interactions in pure Fe$_3$O$_4$ (superexchange interaction between Fe$^{3+}$ ions in tetrahedral and octahedral sites and double exchange interaction between Fe$^{3+}$ and Fe$^{2+}$ ions in octahedral sites) leads to antiferromagnetic orientation of tetrahedral and octahedral magnetic sub-lattice while each sub-lattice’s internal magnetic arrangement is ferromagnetic. Due to this magnetic arrangement, magnetic shares of Fe$^{3+}$ ions in A and B sites neutralize each other and only unpaired moments of Fe$^{2+}$ ions in B-site determine the total magnetization (17). As Zn doping is added to the structure, Zn doping percent is initially low. So, Fe$^{2+}$ ions are turned to Fe$^{3+}$ ions, keeping their initial spin orientation. This leads to initial increase of M_s value. As Zn value increases, superexchange interac-tions overcome double exchange intera-ctions and a number of the obtained Fe$^{3+}$ ions are arranged in an anti-parallel orientation to the other B-site ions. This orientation decreases M_s value (7). Consequently, simultaneous effect of the mentioned
factors—crystal size and exchange interactions causes change in the saturation magnetization showed in Figure 5.

![Figure 5](image)

Figure 5. Magnetization curves normalized by M (0) (M, value of the pure sample(x=0)).

FT-IR analysis

Figure 6 demonstrates the FT-IR spectrum of Zn$_x$Fe$_{3-x}$O$_4$ (x=0-0.125) nanoparticles. In the pure sample (x=0) spectrum, presence of absorption bands at 425, 591 and 624 cm$^{-1}$ wavenumbers—associated with Fe-O stretching vibrations of Fe$^{2+}$ and Fe$^{3+}$ ions in octahedral sites and those of Fe$^{3+}$ ions in tetrahedral sites—confirm Fe$_3$O$_4$ structure formation (18).

With the addition of impurities, zinc, despite the presence of all pure Fe$_3$O$_4$ absorption bands, as already mentioned, due to conversion of Fe$^{2+}$ ions to Fe$^{3+}$ ions in octahedral sites and changes in the properties of the created bonds between Fe$^{3+}$ ions and oxygen ions, the absorption peaks of this bond shift in the FTIR spectra.

The shifting happening at the wavelength range of 578-591 cm$^{-1}$ is clearly recognizable in the magnified Figure 6 at 400-1000 cm$^{-1}$ range (Figure 7).

In all FTIR spectrums demonstrated in Figure 6 two absorption bands centered at 1624 and 3432 cm$^{-1}$ can also be seen which are related to the O-H vibrations of the free water molecules and adsorbed water on samples' surface (11).

It is worth mentioning that in these spectrums, absorption bands of the Zn-O bond vibrations caused by presence of Zn$^{2+}$ ions in Fe$_3$O$_4$ crystal lattice are invisible due to their overlapping with Fe-O vibrations absorption peaks at 425 cm$^{-1}$ region.

Optical properties analysis

Samples UV-Vis absorption spectrums were measured to investigate Zn-doping effect on magnetite NPs optical properties such as optical absorption and band gap (Figure 8). Having added 2% Zn doping, sharp absorption edges appear in this region due to

![Figure 6](image)

Figure 6. FTIR spectrums of the Zn$_x$Fe$_{3-x}$O$_4$ (0 ≤ x ≤ 0.125) nanoparticles.

![Figure 7](image)

Figure 7. Magnified FTIR spectrums at 400-1000 cm$^{-1}$ range.
Properties of Zn doped Fe₃O₄ nanoparticles

light absorption and scattering by nanoparticles. As demonstrated, pure Fe₃O₄ NPs do not reveal sharp absorption edges in UV region. As doping increases, optical absorption decreases. So, doping increase leads to absorption decrease and or increases nanoparticles optical transmittance which reflects Zn incorporation in Fe₃O₄ lattice.

Indirect band gap of the ZnₓFe₃₋ₓO₄ (x=0-0.125) nanoparticles are calculated by Tauc equation Eq. (5):

\[a h v = A (h v - E_g)^{1/2} \]

(5)

Where \(a \) is the absorption coefficient, \(A \) is a constant, \(h \) is Planck's constant, \(v \) is the photon frequency and \(E_g \) is the energy (19).

Figure 8. UV-Vis absorption spectrums of ZnₓFe₃₋ₓO₄ (x=0-0.125) nanoparticles.

In Tauc equation; when \(a h v=0 \), \(h v= E_g \). So; \(E_g \) might be calculated by plotting a diagram of \((a h v)^{1/2}\) versus \(h v \) and then extrapolating their linear region (Figure 9). Band gap studies reveal that \(E_g \) value in Zn-doped Fe₃O₄ nanoparticles is higher that of pure Fe₃O₄. Based on literature, indirect band gap of Fe₃O₄ is 0.1 eV (20). As doping percent increases, indirect band gap value decreases from 1.26 eV in \(x=0.025 \) to 0.43 eV in \(x=0.125 \). This may be ascribed to the fact that new defect are introduced after substitution of Zn by Fe atoms in order to electro negativity and ionic radius difference between Zn and Fe. Moreover, there are more electrons contributed by Zn dopant due to lower electron affinity of Zn compared to Fe, (Zn=0 Kj/mol⁻¹, Fe=15 Kj/mol⁻¹) which take up the energy levels location in the bottom of the conduction band. The valence electrons require extra energy to be excited to higher energy states in the conduction band.

Conclusion

This study aims at investigating Zn-doping effects on structural, magnetic and optical properties of magnetite NPs. Based on the obtained results, in XRD patterns of all samples, magnetite pure phase formation with cubic inverse spinel structure was recognized without any secondary phase of Zn compounds. Two important effects of doping on structural properties are lattice constant increase and crystal order decrease, which were proved based on peak shift toward smaller angles and diffraction peaks intensity decrease, respectively. Magnetic investigations on the samples reveal the formation of superparamagnetic structures with high saturation magnetization with a maximum level of 74.60 emu/g in \(x=0.075 \). Saturation magnetization changes were explained based on
doping effects on particles crystal size and ions arrangements in tetrahedral and octahedral sites. Optical studies revealed Fe3O4 nanoparticles’ band gap increase due to Zn doping. As doping percent increases, band gap value decreases from 1.26 eV to 0.43 eV. It is believed that the prepared nano-composite with its magnetic potential can be considered for different biomedical and biosensing application.

Acknowledgments
This work was funded by Ferdowsi University of Mashhad, Mashhad, Iran.

References
Properties of Zn doped Fe$_3$O$_4$ nanoparticles

Properties of Zn doped Fe₃O₄ nanoparticles