RESEARCH PAPER

Controlled release of anticancer drugs via the magnetic magnesium iron nanoparticles modified by graphene oxide and polyvinyl alcohol: Paclitaxel and docetaxel

Ahmad Gholami 1, Biuck Habibi 1*, Seyed Ali Hosseini 2, Amir Abbas Matin 3, Naser Samadi 4

1Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran
2Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
3Chromatography Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran
4Analytical Spectroscopy Research Laboratory, Department of Chemistry, Faculty of Science, Urmia University, 1177, Urmia, Iran

*Corresponding Author Email: B.Habibi@azaruniv.ac.ir; biuck-habibi_a@yahoo.com

ABSTRACT

Objective(s): Paclitaxel (PTX) and docetaxel (DTX) belong to the family of taxanes drugs which have been employed for treatment of ovarian, breast, lung, head, neck, gastric, pancreatic, bladder, prostate and cervical cancer. Controlled drug release systems improve the effectiveness of drug therapy by modifying the release profile, biodistribution, stability and solubility, bioavailability of drugs and minimize the side effects of anticancer drugs. So, the purpose of the present study was to synthesize the modified nanocomposite for the controlled releases of these drugs.

Materials and Methods: Magnetic magnesium iron oxide nanoparticles were synthesized via the co-precipitation chemical method and then composited with graphene oxide and modified by polyvinyl alcohol. The physicochemical characterization of the prepared nanocomposites was investigated by scanning electron microscope (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy and vibrating-sample magnetometer.

Results: Specific characteristics such as adsorption capacity, monodispersity, stability and hydrophilicity of magnetic nanomaterials were studied in the controlled release of anticancer drugs. Drug loading content and drug loading efficiency and release rate of drugs were investigated in vitro at different pH with ultraviolet-visible spectroscopy (UV-Vis). DLE and DLC of PTX and DTX in the modified magnetic nanocomposites were calculated as 85.2 ± 2.7% and 7.74 ± 0.24%, 89.4 ± 1.2% and 8.12 ± 0.11% of, respectively. The cumulative release amount of PTX and DTX from magnetic modified nanocomposites at pHs 5.8, 7.4 over 100 h were 58 % and 40 % and 54 % and 37 %, respectively.

Conclusion: The potential of modified nanocomposite in drug delivery systems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of modified nanocomposite generated by different surface coatings. The generally sustained and controlled release profile of DTX (or PTX) facilitates the application of modified nanocomposite for the delivery of anticancer drugs.

Keywords: Anticancer drugs, Controlled drug release, Docetaxel, Graphene oxide, Magnetic magnesium iron nanoparticles, Polyvinyl alcohol, Paclitaxel

INTRODUCTION

Among the substances that widely used in controlled drug delivery and drug release systems, magnetic nanoparticles are highly considered due to their unusual properties and ability to function at the cellular level of biological interactions [1-3]. The spinel magnetic magnesium ferrite oxide (MgFe2O4) nanoparticles (MMF NPs) is a soft magnetic nanomaterial that has received so far considerable attention in the medical and industrial fields, due to low toxicity, high specific surface area, biocompatibility, biodegradability,
magnetic, electrical, optical, low hysteresis loss and high density properties [3-12]. On the other hand, graphene oxide (GO) with a unique structure that can be regarded as a single monomolecular layer of graphite with some oxygen-containing functionalities [13]. GO has a two-dimensional nanosheets structure as heavily decorated by oxygen-containing groups such as epoxide, carbonyl, carboxyl, and hydroxyl groups, which not only expand the interlayer distance but also make the atomic-thick layers hydrophilic as a result of which GO can be dispersed in several solvents like water [14, 15]. The large specific surface area of GO provides an ideal matrix for the growing and anchoring of MMF NPs or other functional substances to improve the adsorption capacity and prevents nanoparticles from aggregation [16, 17]. Integration of magnetic nanoparticles and GO as an adsorbent holds a great promise for a wide variety of applications in catalysis, removal of heavy metal ions and hazardous substances from aqueous solution, etc. [18]. Protection of magnetic nanoparticles (MNPs) and their composites is of prime importance for obtaining physically and chemically stable colloidal systems. Use of stabilizing surface coating materials may improve both the colloidal and physical stability of the particles, prevent both in vitro and in vivo agglomeration, increase their water-dispersibility, and provide functionalization for further conjugation with bioactive molecules or targeting ligands, and for obtaining multifunctional MNPs [19]. Utilizing polyvinyl alcohol (PVA) [20], as surface coating stabilizer for MNPs or composites, has the advantages of good aqueous dispersion and stability against oxidation of MNPs [21]. PVA has many uses such as adhesives, coatings, films, membranes, drug delivery systems and fuel cells, that have been applied in the industrial, commercial, medical, and food fields. PVA has been employed to increase the compactness and adhesion of GO coatings [22-25]. These compounds and their derivatives of water-soluble versions in particular are a suitable platform for development of efficient controlled drug delivery and release systems [26-30]. These nanocarriers can be loaded with drugs through non-covalent interactions or by covalent conjugation [31]. Conventional pharmacotherapy for the treatment of diseases leads to the occurrence of side effects and to the need for higher doses of the drug to elicit a satisfactory pharmacological response [32]. On the other hand, nanoparticles may consequently minimize the side effects and toxicity of the anticancer drugs while increase its therapeutic efficacy. Controlled drug release systems improve the effectiveness of drug therapy by modifying the release profile, biodistribution, stability and solubility, bioavailability of drugs and minimize the side effects of anticancer drugs. These methods reduce the number and quantity of drug dosages required during treatment and able to target specific sites in the body, thus optimize drug therapy [33, 34]. These systems for intravenous administration of drugs, able to evaluate the drug encapsulation efficiency, site specific treatments, regulate sustained drug release, extend drug retention time, reduce toxicity, and increase the half-life of drugs [35]. Nowadays, in cancer therapy and also treatment of other ailments, the controlled release of drugs by nanostructured functional materials especially MNPs is attracting increasing attention due to its opportunities. The intrinsic properties of the magnetic core of MNPs combined with their drug loading ability and the bio-chemical properties with a suitable coating show the potential of MNPs in the cancer therapy via controlled release of drugs [34]. The coated MNPs also show their potential applications in cancer hyperthermia (42-45°C) therapy. Drug delivery technology by MMF NPs-GO can be used to remove toxic and dangerous compound from the blood [36].

Paclitaxel (PTX) (sold under the brand name of Taxol) and docetaxel (DTX) or docetaxel Trihydrate (sold under the brand name of Taxotere) belong to the family of taxanes drugs which have been employed for treatment of ovarian, breast, lung, head, neck, gastric, pancreatic, bladder, prostate and cervical cancer. These drugs have traditionally been used in high doses every third week in the treatment of cancer as chemotherapeutic agents. These anticancer drugs involve the solvents cremophor and tween 80 which enhance the solubility of drugs, but cause high toxicity [37-40]. In recent years, it is noteworthy that that through targeted therapeutics, nanoparticle delivery systems have shown the potential to overcome the normal tissue toxicity of traditional chemotherapy. For example, nano-spheres of biodegradable polymers [41], PLGA/TPGS nanoparticles [42], poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres [43], PNIPAAm-g-chitosan/PCL-Diol-b-PU core-shell nano-fibers
[44], PTX-Fe-BTC nanocomposite [45], poly(lactic acid)/hydroxyapatite core-shell nanoparticles [46] for paclitaxel, polyelectrolyte coated polymeric nanoparticles [47], PLA/PLGA nanoparticles [48], poly(lactic acid)/chitosan hybrid nanoparticles [49], polymeric nanoparticles [50], poly(3HB-co-4HB) biodegradable nanoparticles [51], PLGA nanoparticles [52] for docetaxel and chitosan-based advanced materials [53], N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer [54] for both of them. In the present work, we report the synthesis of the magnetic magnesium ferrite oxide nanoparticles (MFO NPs) composited with GO and modified by PVA. Physicochemical characterizations of the prepared nanocomposites were investigated by different techniques and then were applied for controlled release of anticancer drugs; PTX and DTX.

MATERIALS AND METHODS

Materials

Sulphuric acid (98%), magnesium nitrate hexahydrate, iron (III) nitrate nonahydrate, iron (II) chloride tetrahydrate, iron (III) chloride hexahydrate and hydrogen peroxide (30%) were obtained from Sigma-Aldrich Company. Ammonia solution (28%), epychlorohydryne (ECH), sodium hydroxide, polyvinyl alcohol, ethanol, potassium permanganate (KMnO₄), hydrochloric acid (32% analytical grade), glutaraldehyde and natural flake graphite (NFG) were obtained from Fulka Company. Taxol and taxotere were provided from the Urmia University of Medical Sciences and Tabriz University of Medical Sciences. The phosphate buffer solutions (PBS; 0.1 M) were made up of H₃PO₄, NaH₂PO₄, Na₂HPO₄ and NaOH and adjusting the pH with of NaOH (1.0 M) or HCl (1.0 M) in order to obtain the desired pH value. All aqueous solutions are provided with deionized water. All experiments were conducted at ambient temperature (25 ± 2°C).

Processes

Synthesis of magnetic Fe₃O₄ nanoparticles

Magnetic iron nanoparticles were synthesized from the alkaline solution of iron (II) and iron (III) salts by co-precipitation procedure. Iron (II) chloride tetrahydrate, FeCl₂.4H₂O, and iron (III) chloride hexahydrate, FeCl₃.6H₂O were dissolved in water in a molar ratio of 1:2 and was stirred for 15 min. To remove the dissolved oxygen disturbance, it was exposed to nitrogen and then ultrasonication for 20 min. Then the ammonia solution (3 M) was added dropwise until the pH reached 10 and stirring was continued for 1 h. The produced solid, Fe₃O₄ precipitate nanoparticles, was separated by a magnet and washed with ethanol.

Synthesis of magnetic MgFe₂O₄ nanoparticles

Magnetic MgFe₂O₄ nanoparticles (MFO NPs) were prepared by the co-precipitation procedure as reported earlier with some modification [55]. The mixture of Mg(NO₃)₂.6H₂O (0.54 g, 2.1 mmol), Fe(NO₃)₃.9H₂O (1.7g, 4.2 mmol), were dissolved in 50 ml distilled water and stirred. Next, NH₄OH (3 M) was added drop-wise in to this solution during 1 h at room temperature to obtain a mixture of pH=10 (to remove the dissolved oxygen disturbance, it was exposed to nitrogen gas). The produced solid, MFO NPs, was separated by a magnet and repeatedly washed with ethanol and deionized water to remove excess of ammonium and nitrate ions, and then dried at 100°C for 12 h in oven. The resulting sample was calcinates at 600°C for 8 h to evaluate the thermal stability and magnetic properties, and then grinded to obtain the fine nanoparticles.

Synthesis of graphene oxide

Graphene oxide (GO) was synthesized using the modified Hummer’s method [56]. Briefly, 3.0 g graphite powder was slowly added in a concentrated H₂SO₄ (100 mL) solution in an ice bath. While maintaining vigorous stirring, 12.0 g (76 mmol) KMnO₄ and 3.0 g NaNO₂ were slowly added to the flask and the temperature was kept below 10°C. The mixture was stirred at ice bath for 1 h and then for another 1 h at 35°C. Deionized water (200 mL) was gradually added, causing an increase in temperature to 80-90°C and was stirred. After 15 min, the mixture was treated with 40 mL H₂O₂ (30 wt. %), which the color of the mixture changed to bright yellow (brown-colored viscous slurry). The mixture GO was centrifuged and washed with 1:10 HCl solution and deionized water for several times to remove the residual metal ions and the impurities until the pH was 7 and then dried at 65°C (at room temperature) in vacuum.

Preparation of the MgFe₂O₄-GO nanocomposite

25.0 mg GO was dispersed in 50 mL deionized water by sonication for 1 h. Then 0.15 g NaOH to transform the carboxylic acid groups to
carboxylate anions was added and stirred for 20 min. 5.0 ml epichlorohydrine (ECH) as coupling agent were added dropwise to GO solution at room temperature. After being ultrasonicated for 30 min and stirred for 30 min, 25.0 mg MgFe₂O₄ nanoparticles were added into the mixture, and stirred at 40°C for 12 h. The mixture was treated with ultrasonic device for 1 h. After the treatment, the MgFe₂O₄-GO nanocomposites were separated by centrifugation at 4000 rpm for 20 min and dried at room temperature under vacuum condition [57].

Preparation of MgFe₂O₄-GO nanocomposite modified by PVA

50.0 mg MgFe₂O₄-GO nanocomposite and 50 ml deionized water were treated with ultrasonic device for 1 h. Then 70.0 mg polyvinyl alcohol (PVA) was dissolved in 25 mL of water, which was slowly added dropwise into the mixture at room temperature with rapidly stirring for 20 min. (The mixture was heated for 6 h with constant stirring). Then 1 ml glutaraldehyde and 1 ml HCl were added, and the mixture was sonicated for 30 min and stirred for 1 h. The modified nanocomposite, MgFe₂O₄-GO-PVA, were isolated by centrifugation at 4000 rpm for 20 min and washed twice with deionized water to remove free additional PVA and dried at room temperature under vacuum condition.

Paclitaxel loading on the MgFe₂O₄-GO-PVA modified nanocomposite

MgFe₂O₄-GO-PVA modified nanocomposite (100 mg) and a certain amount of paclitaxel (PTX) (10 mg) were dissolved in 5 ml mixture of ethanol and deionized water. The aliquot of the suspension was sonicated for 30 min and maintained under mechanical stirring for 24 h at 600 rpm. After the reaction, the MgFe₂O₄-GO-PVA modified nanocomposite as paclitaxel nanocarriers was separated by centrifuge at 4000 rpm for 20 min to remove the unloaded drugs and the supernatant was passed through membrane (pore size: 0.45 µm, Millipore). The resulting PTX loaded MgFe₂O₄-GO-PVA modified nanocomposite was cleaned by repeating the procedure of centrifuging and re-suspending in deionized water two times and then was collected with a laboratory magnet.

Docetaxel loading on the MgFe₂O₄-GO-PVA modified nanocomposite

MgFe₂O₄-GO-PVA modified nanocomposite (100 mg) and a certain amount of docetaxel (DTX) (10 mg) were dissolved in 5 ml mixture of ethanol and deionized water. The aliquot of the suspension was sonicated for 30 min and maintained under mechanical stirring for 24 h at 600 rpm. Then the mixture was centrifuged at 4000 rpm for 20 min to remove the unloaded drugs and the supernatant was passed through membrane. The resulting DTX loaded MgFe₂O₄-GO-PVA modified nanocomposite was cleaned by repeating the procedure of centrifuging and re-suspending in deionized water two times and then was collected with a laboratory magnet.

The drug content in the MgFe₂O₄-GO-PVA modified nanocomposite is defined as the ratio of the loaded drug to the total weight of solid magnetic nanocomposites. The loading efficiency is defined as the ratio of the loaded drug content to the total amount of drug used for nanocomposite preparation. In order to assess the drug concentration in the studied systems, UV-Vis measurements were utilized. PTX (or DTX) concentration was evaluated by the application of the Beer’s law. By comparing UV spectra of supernatant and the standard calibration curve of absorbance maximum with concentration of DTX at λ max=229 nm and PTX at λ max= 231 nm, the amount of PTX (or DTX) adsorbed by the MgFe₂O₄-GO-PVA magnetic nanocomposite was measured.

The following equations were used to calculate the drug loading efficiency (DLE) and drug loading content (DLC) [58]:

\[
\text{Drug loading efficiency} = \frac{\text{weight of loaded drug in modified nanocomposite}}{\text{weight of initial loading of drug}} \times 100
\]

\[
\text{Drug loading content} = \frac{\text{weight of loaded drug in modified nanocomposite}}{\text{weight of PTX (or DTX) - modified nanocomposite}} \times 100
\]

In vitro drug release study

PTX (or DTX) release experiments from solid magnetic modified nanocomposites was performed in phosphate buffered solution (PBS) medium (pH 5.8, 7.4) containing 0.5% Tween (or cremophor) at 37°C, using the dialysis method. A weighed amount of DTX (or PTX) - loaded solid magnetic modified nanocomposites samples was re-suspended in PBS and then transported into a suitable dialysis bag. The dialysis bags were placed into 15 mL of pre-heated PBS as a release medium and shaken at at 37 °C and 100 rpm, with the same pH. At certain time intervals, the solution outside of the dialysis bag was removed for UV–Vis analysis and replaced with an equal amount of fresh PBS solution. At fixed time intervals (e.g.
4 days) the amount of PTX (or DTX) released was monitored spectrophotometrically at 231 and 229 nm, respectively, and the amount of the released drug was calculated from a standard curve of free PTX (or DTX) solution. In the calculation of drug release behavior, the cumulative amount of released drug was calculated, and the percentages of released drug from solid magnetic modified nanocomposites were plotted against time. All experiments were carried out in triplicate. The results of triplicate measurements were used to calculate cumulative drug release [59, 60].

Instruments

Fourier-transform infrared spectroscopy (FT-IR); Thermo Scientific Ni-colet 95 IS10 FT-IR spectrometer, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX); QUANTA 400F Field Emission SEM high-resolution scanning electron microscope, X-ray diffraction patterns (XRD); Brucker AXF (D8 Advance) X-ray powder diffractometer with a Cu Ka radiation source (λ = 0.154056 nm) generated at 40 kV and 35 mA, and vibrating sample magnetometer (VSM); Oxford type 1.2 T vibrating sample magnetometer analysis techniques were used for elemental analysis, size and surface morphology, structural analysis, and magnetic characterization of synthesized nanomaterials. All of the drug loading and release studies were analyzed using a Jenway UV-Visible Spectrophotometer (Model 6405).

RESULTS AND DISSCATION

The synthesis processes of the magnetic magnesium iron NPs modified by graphene oxide and polyvinyl alcohol are shown in scheme 1.

Physicochemical characterizations

FT-IR

In order to study the presence of functional groups in synthesized materials, FTIR analysis was carried out. FTIR spectra of the MgFe$_2$O$_4$ nanoparticles, MgFe$_2$O$_4$-GO nanocomposite and MgFe$_2$O$_4$-GO-PVA modified nanocomposite samples are presented in Fig 1. As shown in Fig 1 (spectrum a), the characteristic peaks at 438, 477 and 553 cm$^{-1}$ for the MgFe$_2$O$_4$ nanoparticles are referred to the stretching vibrations of the octahedral and tetrahedral group complexes [61], which confirmed solid magnetic has spinel ferrites in structure, bending vibration of hydrogen-bonded surface water molecules is observed at 1637.52 cm$^{-1}$ and broad absorption band at 3420 cm$^{-1}$ is assigned to O-H stretching vibration [62]. The absorption peaks at 2363 cm$^{-1}$ and 972 cm$^{-1}$ are ascribed by the absorbed atmospheric CO$_2$ and formation of Mg substituted spinel ferrites [63]. The Fe-O characteristic stretching vibration peak at 568 cm$^{-1}$ was observed in Fig 1 (spectrum...
b), which proved that MgFe$_2$O$_4$ nanoparticles were successfully anchored onto GO sheet in the MgFe$_2$O$_4$-GO Fig 1: FT-IR spectra of MgFe$_2$O$_4$ nanoparticles (a), MgFe$_2$O$_4$-GO nanocomposite (b) and MgFe$_2$O$_4$-GO-PVA modified nanocomposite (c) nanocomposite [64]. But the absorption peak of the Fe-O vibration (580 cm$^{-1}$) decreased in Fig 1. (spectrum c), which suggested the encapsulation of MFO within the matrix of PVA in the MgFe$_2$O$_4$-GO-PVA modified nanocomposite [65].

XRD

X-ray diffraction (XRD) analysis was investigated for the study the structure and composition of synthesized materials. XRD patterns of MgFe$_2$O$_4$ nanoparticles, MgFe$_2$O$_4$-GO nanocomposite and MgFe$_2$O$_4$-GO-PVA modified nanocomposite were carried out in 2θ range of 10-80°. Fig 2. shows the XRD patterns of MgFe$_2$O$_4$ nanoparticles, MgFe$_2$O$_4$-GO nanocomposite and MgFe$_2$O$_4$-GO-PVA modified nanocomposite. As can be seen on the pattern of MgFe$_2$O$_4$ nanoparticles, the characteristic diffraction peaks were found at 30°, 35°, 43°, 53°, 57°, and 63° that match well with data from the JCPDS card (88-1942) for MgFe$_2$O$_4$. These diffraction peaks corresponding to planes (220), (311), (400), (422), (511) and (440) provide a clear evidence for the formation of spinel structure of the magnetic magnesium ferrite nanoparticles [66]. The observed pattern is similar to literature and provides a clear evidence of MgFe$_2$O$_4$ formation [67, 68]. On the XRD patterns of the MgFe$_2$O$_4$-GO nanocomposite and MgFe$_2$O$_4$-GO-PVA modified nanocomposite same diffraction peaks were found which indicates that the crystallographic structure of the MgFe$_2$O$_4$ nanoparticles do not changed in the modification processes.

SEM

SEM images of MgFe$_2$O$_4$-GO nanocomposite and MgFe$_2$O$_4$-GO-PVA modified nanocomposite were carried out to know surface morphology and to estimate the particles size. Typical SEM images of MgFe$_2$O$_4$-GO nanocomposite and MgFe$_2$O$_4$-GO-PVA modified nanocomposite were shown in Fig 3.
PVA modified nanocomposite are shown in Fig 3. (up) and (down), respectively. The images show the spherical morphology of the particles and the particles are uniformly wrapped by GO sheets and PVA. The estimated particle size was in the range of 40-70 nm. It was revealed by SEM imaging that the nanoparticles were generally spherical in shape with a narrow size distribution.

Vibrating-sample magnetometer (VSM) studies

Magnetization of MgFe$_2$O$_4$ nanoparticles demonstrated the clear s-shaped hysteresis loop that confirmed the ferromagnetic nature of MgFe$_2$O$_4$ nanoparticles. As shown in Fig 4, the saturation magnetization value (Ms) of MgFe$_2$O$_4$ nanoparticles (loop left) decreased with anchoring of MFO onto GO sheets nanocomposite (loop middle) and covering of nanocomposite with PVA (loop right) from 7.85 to 1.68 emu/g. The values of coercivity (Hc) increased with anchoring of MFO onto GO sheets and covering of nanoparticles with PVA from 98 to 204 Gauss. These results are presented in Fig 4. and Table 1.

Drug loading and in vitro drug release

In order to study of the drug release, the experiments were performed at the various dose of DTX (or PTX)-MFO-GO-PVA modified nanocomposite and pHs, so that the experiments had depending on time. The releasing of the drug were studied in the phosphate buffered medium in the range of times between 1 and 100 h. for this purpose 5, 10, 15 and 20 mg of DTX- MFO-GO-PVA modified nanocomposite and PTX- MFO-GO-PVA modified nanocomposite dose were used for studied of in vitro drug release. According to the Fig 5. with increasing the modified nanocomposite dose the concentration of loaded DTX and PTX increased [37-39]. Fig 6. revealed that the 10 mg dose had a gradual release in compared with 5, 15 and 15 mg of DTX- MFO-GO-PVA modified nanocomposite and PTX- MFO-GO-PVA modified nanocomposite. Due to the agglomeration of modified nanocomposite in 20 mg dose of DTX (or PTX)-MFO-GO-PVA modified nanocomposite and gradual release of the DTX and PTX drug in 10 mg,

Table 1. Various magnetic parameters for MgFe$_2$O$_4$ nanoparticles, MgFe$_2$O$_4$-GO nanocomposite and MgFe$_2$O$_4$-GO-PVA modified nanocomposite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MgFe$_2$O$_4$</th>
<th>MgFe$_2$O$_4$-GO</th>
<th>MgFe$_2$O$_4$-GO-PVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetization (Ms) (emu/g)</td>
<td>7.85</td>
<td>3.73</td>
<td>1.68</td>
</tr>
<tr>
<td>Coercivity (Hc) (G)</td>
<td>98</td>
<td>148</td>
<td>204</td>
</tr>
</tbody>
</table>
10 mg was specified as appropriate dose for this research. According to the Fig 6, in 5, 15 and 20 mg dose about 54% of DTX and PTX have released in less than 30 h. While in 10 mg dose of DTX- MFO-GO-PVA modified nanocomposite and PTX- MFO-GO-PVA modified nanocomposite 54% of the drug have released over the 85 h.

The in vitro drug release profiles of PTX- MFO-GO-PVA modified nanocomposite and DTX- MFO-GO-PVA modified nanocomposite in the 100h were investigated in PBS medium (pHs 7.4, 5.8) at 37°C in Fig 7. In the following 24 h, about 54 percent of PTX was released from MNPs at pH 5.8, compared with 58 percent of DTX, while about 37 percent of PTX was released from MNPs at pH 7.4, compared with 40 percent of DTX, respectively. After 100 h, the cumulative release amount of DTX from MFO-GO-PVA modified nanocomposite at pH 5.8 was only 58 % compared with 54 % of PTX, the cumulative release amount of DTX from MFO-GO-PVA modified nanocomposite at pH 5.8 over 100 h was only 58 %, compared with 54 % of PTX, respectively. As shown in Fig 5. the cumulative release of DTX (or PTX) was faster in acidic pH (pH 5.8) than in neutral pH (pH 7.4) [44].

Temperature has a great role in drug release and directly effects on the drug delivery process. The use of temperature as a bio-stimulant is considered due to the change in human body temperature in the presence of pathogens from the normal temperature of 37 °C. In order to study the effect of temperature the experiments were performed at temperature ranges from 10°C to 42°C. The results have shown in Fig 8. According to the Fig 8. drug cumulative drug release has increased by temperature increasing from 10 to 37 C but in the temperature ranges of 37°C to 43°C drug release significantly has decreased. The temperature effect on drug release may be attributed to both the reduction of PVA polymeric core stability in the bulk phase and the cell death at higher temperatures than 37°C [45].

The DTX (or PTX) loadings of MFO-GO-PVA modified nanocomposite were calculated and
shown in Table 2. The result indicated that the DTX was effectively loaded into the modified nanocomposite, 89.4 ± 1.2% compared with 85.2 ± 2.7% of PTX. The DTX loading content of MFO-GO-PVA modified nanocomposite was 8.12 ± 0.11% w/w compared with 7.74 ± 0.24% of PTX.

CONCLUSIONS

MgFe$_2$O$_4$ nanocomposite with graphene oxide were fabricated via facile routes such as micro-emulsion and ultra-sonication route respectively. MgFe$_2$O$_4$ NPs were well anchored onto graphene oxide (GO) and the product was chemically modified with PVA successfully. The data of all characterizations techniques like XRD, FTIR, SEM and VSM were found in agreement with each other. XRD analysis reveals that the synthesized samples without trace of any impurity. The nano size of the MgFe$_2$O$_4$ powder, as observed from SEM image. The FTIR pattern confirms the characteristic peaks of ferrite system. The hysteresis loop exhibits ferromagnetic behavior. Utilizing GO shells and PVA coatings decrease the saturation magnetization value (Ms) of MgFe$_2$O$_4$ nanoparticles but increase coercivity (Hc) of nanocomposites. The potential of MFO-GO-PVA modified nanocomposite in drug delivery systems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of MFO-GO-PVA modified nanocomposite generated by different surface coatings. The generally sustained and controlled release profile of DTX (or PTX) facilitates the application of MFO-GO-PVA modified nanocomposite for the delivery of anticancer drugs.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Research Council of Azarbaijan Shahid Madani University for financial support.

CONFLICTS OF INTEREST

There are no conflicts to declare.

REFERENCES

38. Conte C, Ungaro F, Maglio G, Tirino P, Siracusano G, Sciortino MT, et al. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by...