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ABSTRACT
Nanotechnology has introduced many useful uses to people’s lifestyles in various fields such as health 
care, agriculture, the food industry, and separate industries during the previous few decades, and it is now 
available to the majority of the world’s population. Among these applications, nanotechnology is critical in 
the realm of medical therapy. Many forms of studies indicate that nanoparticles, particularly metal oxide, can 
make a significant contribution to this field. In the current work, we examined one of them, MgO, a critical 
inorganic oxide used in a variety of applications. MgO is a multilateral oxide material with several properties, 
including great thermodynamic stability and a low refractive index and dielectric constant. The wide bandgap 
allows for a variety of uses in ceramics, catalysis, hazardous waste remediation, and antibacterial materials 
as a refractory additive paint and as a superconductor product. MgO NPs have been used in a variety of 
disciplines due to their extensive properties and functions, which we will discuss in this article.
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INTRODUCTION
Nanotechnology has made significant 

development in terms of preparation, 
characterization, and application during the last 
several years. Nanomaterials are commonly 
used in scientific study due to their intriguing 
features and benefits over bulk materials. Many 
researchers with diverse interests and specialties 
have been drawn to nanomaterials in order to 
improve the quality of their study work while using 
nanomaterials. Many metal oxide Nanoparticles 
possess numerous advantages and are used in the 
medical research [1-4] such as Ag2O [5, 6], CaO [7, 
8], CuO [9-11], ZnO [12-14], SiO2 [15-17], NiO [18, 
19], CrO [20], Fe3O4 [21-23], Fe2O3 [24, 25], Al2O3 

[26-29], CdO [30-32], and CeO2 [33, 34]. Similarly, 
MgO nanoparticles have a high potential for use in 
nanomedical research [35], as well as numerous 
other applications in agriculture[36-38], chemical 
reaction catalysis [39-41], dye removal [42-44], 
and lithium batteries [45-47]. The interesting 
properties of MgO nanoparticles, such as 
stability, easy and inexpensive preparation 
methods, including green ones, magnetization, 
crystallinity, absorptivity, electrical and thermal 
conductivity, stoichiometry, large surface area, 
and reactivity, are attributed to their wide range 
of applications. All of these amazing capabilities 
propelled MgO nanoparticles to the forefront of 
nanomedical research. Our review will show the 
many preparation procedures that can produce 
MgO NPs with a uniform size distribution, various 
forms, and variable Dimensions.
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The shape of MgO nanoparticles
Understanding shapes is fundamental to 

cognitive development; it is significant because 
it has practical applications in medicine, industry, 
agriculture, and scientific study.

MgO nanoparticles come in a variety of 
morphologies, including spherical nanocubes, 
nanocrystals, nanofibrous nanowires, nanotubes, 
and nanosheets. This variety of MgO NPs shapes 
has resulted in a wide range of applications that 
exploit each shape in a variety of fields. Table 1 
depicts several shapes of MgO nanoparticles.

The morphological structures of MgO 
nanoparticles were examined using a variety of 
analytical techniques. X-ray Diffraction is used 
to determine the crystallinity and size of the 
MgO nanoparticle (XRD). Transmission electron 
microscopy is used to determine the size and shape 
of the particles (TEM). Using Fourier transform 
infrared microscopy, the sample’s infrared spectrum 
was acquired, revealing its powdered nature. UV-
Visible spectroscopy was used to evaluate the 
optical properties of the NPs [48].

 

–

–60 nm in diameter
thickness ~ 5 nm

–

Table 1. shapes and sizes obtained from different preparation methods
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MgO nanoparticles size
MgO NPs have a long history of use in a variety 

of sectors for a variety of reasons [49]. Depending 
on the fabrication circumstances, different 
sizes have different properties: calcinations and 
temperature rate in the thermal decomposition 
method; conditions of gel preparation such as the 
heating rate for gel formation, pH, gelling agents, 
and temperature of gel calcination in the sol-gel 
method. The bactericidal characteristics of MgO 
fluctuate with particle size, with the bactericidal 
efficacy of MgO Nanoparticles increasing as 
particle size decreases [50]. The optical properties 
of MgO nanocubes, as measured by UV diffuse 
reflectance and photoluminescence spectroscopy, 
also reflect the change of the ratio between corner 
and edge ions [51]. The diameters of the MgO 
particles ranged from micro- to nano-sizes [52] or 
variable grain sizes [53]. Dynamic light scattering 
[54], disc centrifugation [55], nanoparticle tracking 
analysis [56], tunable resistive pulse sensing 
[57], atomic force microscopy [58], and electron 
microscopy are some of the techniques used to 
measure their size. The BET method can be used 
to calculate the surface areas of MgO particles, 
which have a high surface area of about 100 m2/g 
[51]. The size of MgO nanoparticles measured by 
various preparation processes is shown in Table 1.

MgO nanoparticles role in cancer therapy
Cancer is one of the top causes of death 

in all countries [83]. A cancer tumor develops 
when a person’s cells begin to divide rapidly into 
surrounding tissues. Tumors can occur because of 
these excess cells. Cancer is a hereditary disease 
caused by genes that regulate cell processes, 
particularly growth and division. Because cancer 
cells can ignore signals telling them to stop 
proliferating, they can divide forever or initiate 
the process of programmed cell death, or 
apoptosis, which is a procedure used by the body 
to eliminate undesired or damaged cells. Because 
cancer is a lethal disease with over 100 different 
types of cancer for different tissues and organs, 
we need simple and inexpensive treatments. The 
utilization of oxide nanoparticles biogenic sources 
to substitute harmful compounds has become the 
current intriguing challenge. Nanoparticles less 
than 100 nm in size can interact with proteins, 
nucleic acids, and lipids both inside and outside 
the cell, which may aid in cancer diagnosis and 
treatment. MgO nanoparticles are one type of 

nanoparticle that uses sargassum wighitii (marine 
brown algae) as a capping and reducing agent. 
MgO NPs were tested against lung cancer cell 
lines in this study. MgO NPs produced lung cancer 
cytotoxicity, which might be attributed to elevated 
ROS levels as the mitochondrial membrane 
potential was altered, initiating the apoptotic 
process and ultimately leading to cell death [84]. 
The cytotoxicity test confirmed that the produced 
nanostructures are non-poisonous to normal 
healthy RBCs. MgO nanorods have potential 
applications such as a powerful chemotherapeutic 
agent for the rapid detection and identification of 
all cancer types [85]. The cytotoxic effects of MgO 
NPs on normal lung fibroblast cells and various 
malignant cells revealed that they had a magical 
power to destroy cancerous cells, including HeLa, 
AGS, and SNU-16 cells. In addition, MgO NPs were 
implied in hyperthermia and nano cryosurgery 
to cure cancer. These discoveries broaden the 
scope of MgO Nanoparticles’ possible use in 
nanomedicine for a cancer cure as a viable 
alternative to chemotherapy because of their 
toxicity to cancer cells via apoptosis induced by 
ROS [86]. Measuring the heating efficiency of Fe/
MgO magnetic shell nanoparticles and their in 
vitro application in hyperthermia was examined in 
human breast cancer cell lines. This study might 
be considered the first key principle for in vitro 
hyperthermia.

More research on the hyperthermal 
response is required before moving on to in vivo 
approaches [87]. MgO NPs have the potential to 
be exploited as a drug transporter and releaser. 
Furthermore, bimetal oxide nanoparticles 
with a multifunctional attitude will play a 
prominent role in DDS as a favourable drug 
vehicle [88]. Penicillium fungi were employed in 
the manufacture of MgO nanoparticles, which 
resulted in Stable Nanoparticles with outstanding 
anticancer properties and low influence 
on normal cells. Nanoparticles stimulated 
apoptotic activity and DNA damage, although 
more cytotoxicity experiments are needed to 
establish the Nanoparticles’ potential toxicity 
[89]. Nanoparticles have a strong reciprocal 
effect with biomolecules, which can improve the 
way anticancer drugs are recognized. They can 
overpower cellular and noncellular strategies of 
blocking foreign bodies, making it easy for the 
drug to target the cancer cells and decreasing 
its dangerous effects on normal cells [90]. MgO 
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nanoparticles could be used in the freezing method 
of nano cryosurgery, using their advantages as 
they are non-poisonous, biodegradable, and have 
a few bad consequences on humanity.  According 
to experiments on animal and nucleation analysis, 
the bringing of MgO nanoparticles with their slight 
weight and good thermal features to the marked 
tissue would enhance the result of the cryosurgery 
as thermal features help shape the ice ball in the 
freezing method quickly and effectively [91]. The 
need to use nanomaterials in medications for 
humans is crucial to examine them clinically and 
study their interactions with plasma proteins as 
human serum albumin (HSA) and their cytotoxic 
effects on normal and cancer cell lines. It was 
found that MgO nanoparticles build an inactive, 
unplanned combination with HSA molecules by 
actions lacking attraction for water. Docking study 
dependent upon the size of the Nanoparticles 
showed that there are varying connections that 
can be constructed between MgO Nanoparticles 
and HSA.  The circular dichroism spectroscopy 
Shows that MgO Nanoparticles did not change 
the secondary composition of HAS. They showed 
cytotoxicity instead of the K562 cell line, which 
made it an original anticancer, as their moderating 
of cell death begins with the production of ROS in 
the cancer cells [92].

MgO nanoparticles as an antibacterial
There are two types of bacteria depending 

on their impact on humans; Commensal 
bacteria[93], which are beneficial and essential 
for our survival,  and harmful bacteria[94], which 
threaten our health. We used to get rid of the 
harmful bacteria by using antibiotics. However, 
due to the unselective use of antibiotics, bacteria 
are progressively resistant to several antibiotics 
at a very large rate over time [95-97], leading to 
the rapid development of antibiotic-resistant 
strains due to their potential antibacterial activity 
against Gram-positive and Gram-negative bacteria 
[98]. They are proposed to slow the growth 
rate of more resistant bacteria because they 
target multiple biomolecules simultaneously 
[99]. MgO is a metal oxide nanoparticle with 
antibacterial properties. Its properties depend 
on shape and size. Where small-sized MgO NPs 
had better antibacterial activities towards gram-
negative (E. coli) bacteria and gram-positive (S. 
aureus) [100]. MgO  nanoparticles have dosage-
dependent antibacterial activity [101]. Frequency 

affects the activity too, where increasing shaking 
rate increased the death of bacteria in the slurry, 
suggesting that the active oxygen generated from 
the MgO powder slurry was one of the main factors 
in its activity [102]. MgO nanoparticles can be 
metabolized properly inside the body compared 
to heavy metal oxide nanoparticles (silver and 
zinc), where it is easy for the degraded ions to 
be removed [103]. MgO nanoparticles showed 
unique antibacterial properties against several 
common foodborne pathogens. Their contact 
with bacterial cells leads to leakage from the 
cellular membrane and oxidative stress induction, 
causing cell death [104]. MgO nanoparticles 
were prepared at various temperatures for 
thermal decomposition, resulting in various sizes 
and surface areas. The antibacterial effect was 
studied by diffusion method using E. coli, then 
introducing MgO nanoparticle suspensions. 
The MgO nanoparticles showed remarkable 
bactericidal activity producing a large inhibitory 
zone surrounding the nanoparticles, and stronger 
activity against gram-positive bacteria than gram-
negative ones was noticed. The antibacterial 
activity was more related to the surface area than 
the resulting nanoparticle size [105].

Size impact was also noticed when using Gram-
positive (S. aureus) and gram-negative (E. coli) 
bacteria. The antibacterial efficacy of nanoparticles 
has been examined. Smaller MgO nanoparticles 
are discovered to have both gram-positive and 
gram-negative adverse antimicrobial activity, 
while larger MgO nanoparticles have a gram-
negative adverse impact only [66]. Decreasing the 
size of the nanoparticles will lead to an increasing 
in the surface area. Consequently, a larger number 
of surface hydroxyl groups will help destroy the 
bacterial protein contributing to the antibacterial 
effect of the MgO nanoparticles [106]. In another 
experiment, different concentrations of MgO 
nanoparticles were inoculated with cultures of 
Escherichia coli overnight. MgO nanoparticles 
were found to have potent antibacterial properties 
against foodborne pathogens (E. coli). The MgO 
NPs application injures the cell membrane, 
resulting in intracellular contents leakage 
consequently; bacterial cell death [107]. The same 
activity toward (E. coli) was shown when a simple 
green chemistry procedure was used to synthesize 
MgO NPs, coat them with cotton fabric, and test 
them with the agar diffusion method [108].  The 
antibacterial property of MgO NPs was evaluated 
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as the Inhibitory zones appear around the MgO 
powder slurry when there is direct contact with 
nutrient agar plates inoculated with (E. coli) or (S. 
aureus). However, no zone appeared when they 
were isolated from each other by a penicillin cup 
[109]. The direct interaction between NPs and (E. 
coli) was prone to attack the cell membrane. MgO 
nanoparticles prepared by sol-gel and calcination 
techniques had a high tendency to inactivate (E. 
coli) and remove heavy metal ions. When the 
cell membrane was damaged, heavy metal ions 
entered easily into a bacterial cell and thus induced 
bacterial inactivation [110]. Increasing the shaking 
rate resulted in increasing the death rate of (E. coli) 
in the slurry, showing that the contact frequency 
between bacterial cells and MgO powders affected 
the antibacterial activity. Chemiluminescence 
research revealed that active oxygen produced 
from the MgO powder slurry and that changes in 
antibiotic sensitivity in E. coli treated with MgO 
powder matched those seen in E. coli treated with 
active oxygen. So, it was suggested that the active 
oxygen generated from the MgO powder slurry 
was a primary factor aiding in its antibacterial 
activity [109]. Reactive oxygen species generation 
was also noticed when using MgO antibacterial 
against gram-negative bacteria  Escherichia 
coli  and  Pseudomonas aeruginosa  as well as the 
gram-positive bacterium  Staphylococcus aureus 
with resazurin as an indicator of cell growth. The 
minimal inhibitory concentration of 1,000 μg/
mL for P. aeruginosa & S. aureus and 500 μg/mL 
against E. coli was observed. MgO NPs increased 
ultrasound-induced lipid peroxidation in the 
liposomal membrane [111]. Natural synthesis 
is a new method used to eliminate the chances 
of toxins contaminating; the MgO NPs were 
prepared using extracts from the three different 
leaves: Amaranthus tricolour, Amaranthus blitum, 
and Andrographis paniculata, then inoculating 
in E. coli culture. The nanoparticles made from 
A. blitum had the strongest antibacterial activity 
and the largest inhibition zone [112]. MgO 
nanoparticles prepared with microwaves and 
hydrothermal methods showed a noticeable 
antibacterial activity towards the A. hydrophila 
[113]. The Vibrio Cholerae bacterial system was 
used for antibacterial properties investigation 
of the nanoparticles where significant inhibition 
of bacterial growth is noticed, and insignificant 
cytotoxicity was found in Human intestinal or 
tumor cells [114]. Different MgO nanoparticles 

were synthesized using different methods 
and compared its bactericidal activity to the 
TiO2 nanoparticles on Bacillus subtilis.  The results 
showed that the bactericidal ability of MgO was 
inversely related to the particle size. Magnesium 
oxide nanoparticles have better bactericidal 
effects than TiO2 nanoparticles in both the absence 
and presence of light. The activity was related 
to the high concentrations of O2  found,  which 
is highly active and can react with the peptide 
linkages in the surrounding walls of the spores. 
The spores are destroyed by the resulting damage 
to their structure [115]. Magnesium oxide showed 
great efficiency against P. aeruginosa bacteria 
isolated from Urine tract infection; it showed an 
inhibition zone diameter of 24 mm [116]. Study 
of antibacterial activity of MgO against water 
found bacteria (Pseudomonas  aeruginosa  and 
Staphylococcus aureus) revealed the effectiveness 
of MgO nanoparticle is greater against gram-
positive than the gram-negative pathogens; this 
is attributed to the absence of outer membrane 
within the cell wall, unlike the gram-negative 
bacteria, which have a complex wall [117]. Apart 
from the antibacterial resistance, MgO NPs also 
aid in disease prevention in some veggies. In 
tomatoes, MgO was used to prevent the infection 
with Ralstonia solanacearum.  inducing systemic 
resistance [118]. MgO also conducted antifungal 
activity in Saccharomyces cerevisiae,  Aspergillus 
niger, Candida albicans, and  Rhizopus stolonifer. 
Evaluation of antifungal activity was done via 
measuring the electrical conductivity changes 
resulted from the fungal metabolism. MgO 
nanoparticles show a noticeable effect against all 
fungi used in this study [119]. MgO nanoparticles 
doped with silver were tested for their antibacterial 
effect. This doping process led to a MgO 
nanoparticles size decrease. Also, the bactericidal 
effect of the MgO NPs was improved greatly due 
to increased ROS production and the probability 
of interactions between the nanoparticles and 
Bacteria [120]. 

MgO nanoparticles as a biosensor
Because of its vast surface area, 

electrochemical processes at the nano-scale level 
play a vital role in generating various biosensors 
to detect very low concentrations of chemicals. 
It exemplifies high activity reactions, catalysis, 
and has a high absorption capacity in enzyme 
immobilization [121]. MgO NPs are electrodes 
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that detect hydrogen peroxide (H2O2) via catalase 
enzyme coupling (CAT). H2O2 is decomposed using 
CAT enzyme, while MgO NPs are utilized as an 
electrochemical transducer to assist and expedite 
electron transfer [122]. Another method of using 
nano MgO to detect H2O2 is by immobilizing 
Horseradish peroxidase (HRP) and preserving 
biological activity to a considerable extent, in 
which nano MgO is inoculated in a chitosan 
solution to form a nanocomposite as a stage in the 
manufacturing of an H2O2 biosensor [123]. Another 
biosensor used to detect H2O2 in hydroquinone 
as a mediator is prepared by adding MgO NPs 
prepared by the thermal evaporation method to 
the gold electrode. This biosensor is characterized 
by high sensitivity and rapid response [124].  
Another one is the nonenzymatic sensor used to 
solve the problems of poor reproducibility and 
long-term operation. One of the nonenzymatic 
sensors is MgO nanoporous, which is eco-friendly 
and exhibits excellent electro-oxidation activity 
toward hydrogen peroxide. It can also be applied 
to detect H2O2 in the food as it has no potential 
risks to human health [125]. Another Biosensor 
depends on MgO nanobelts, which are highly 
sensitive towards ascorbic acid [126]. In the last 
years, Graphene was utilized to analyze ascorbic 
acid, dopamine, and uric acid, but this works well 
due to the overlapping of the oxidation peaks of 
these three acids. Recently, MgO nanobelts have 
been synthesized because of peak separation 
between analytes; therefore, the three acids 
can be detected by graphene-modified tantalum 
pelt with MgO NPs. [127,128]. The polyhedral 
nanocages and nanocrystals structures of MgO 
nanoparticles are used to produce high sensitive 
biosensors in a short time, glucose biosensors 
[121]. The biomolecule of MgO NPs, due to 
their biocompatibility, excessive sensitivity, and 
effective surface area, could be utilized as a good 
electrochemical biosensor material for detecting 
nucleic acid molecules [129]. Chitosan-modified 
nano MgO configure nanosensor for sensitive 
detection of V. cholera instead of conventional 
methods and costs a long time [130]. MgO 
nanoflowers are used to produce easy and low-
cost biosensors for efficient detection of micro-
RNA [131-132].

MgO role in tissue engineering
Tissue engineering is a field of research that 

employs living cells in a variety of ways to improve 

tissue and organs by growing and assembling 
three-dimensional tissues from cultivated 
removing cells on bioactive degradable scaffolds 
[134]. Recently, tissue engineering has helped in 
orthopedic disorders treatment because it uses 
engineering principles, biology, and chemistry, so 
it is more effective than traditional methods [135]. 
Bones are characterized by pore interconnectivity 
and highly porous structure. To achieve that, we 
use the first 3D printing scaffolds of tricalcium 
phosphate (TCP) doped with SrO-MgO to improve 
bioactivity, bone formation, leading to early 
healing, increasing density, and reducing of the 
pore size of the bone. Also, doping improves 
bone modeling and mechanical strength of the 
TCP scaffolds [136-137]. Bioactive samples are 
used for bone regeneration applications because 
the hydroxyapatite layerable stimulates biological 
fluids. Researchers have been drawn to glass and 
glass-ceramics based on Ca, Mg, Si2, and O6 in 
recent years due to their exceptional properties, 
which include a low degradation rate, high 
mechanical strength, and low toxicity. It also 
attaches to the tissues of live organisms faster than 
the hydroxyapatite layer [138]. MgO nanoparticles 
are used in conjunction with poly (L-lactic acid) 
(PLLA) and hydroxyapatite (HA) nanoparticles 
to treat damaged bone; MgO NPs are used in 
orthopedic treatment by enhancing osteoblast 
union and spreading on HA–PLLA nanocomposites 
and making mechanical properties suitable for 
cancellous bone applications. Furthermore, MgO 
nanoparticles promote osteoblast growth and can 
be exploited to modify the mechanical properties 
of additive biomaterials [139].

MgO role in dental implantation
The dental implant is paramount to manage 

teeth loss [140].  It should be biocompatible, strong, 
inert, and tough [141]. Recently most modification 
has been designed to reduce time and improve 
dental implantation [142]. Nanotechnology is 
regarded as one of the most promising future tools 
in implant dentistry. Nano surface modification 
technologies are commonly utilized to improve 
the surface material properties of dental implants, 
resulting in faster osseointegration and bone 
healing [143]. Many experiments have been 
conducted in order to promote osseointegration 
and establish a thermal expansive coffined match 
between two phases in bioactive glasses covered 
titanium implants. Magnesium oxide improved the 
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bioactivity, thermal characteristics, and structural 
qualities of glass by inhibiting crystallization, 
lowering the thermal expansion coefficient, and 
softening the glass temperature [144].

MgO Nanoparticle for bioactive glass
Bioactive glasses are reactive materials that 

may connect to mineralized bone tissue in a 
physiological environment and are used to restore 
damaged body parts in particular [145]. They 
accelerate tissue healing by inducing bone cell 
renewal and self-repair [146]. It has a wide range 
of applications in the biomedical field. It was 
first developed for middle ear surgery; it is now 
commonly utilized in the dentistry sector and is 
being researched for use in regenerative medicine 
and tissue engineering. The biocompatibility 
and bioactivity features of Bioactive glass are 
enhanced in nano-sized Biomaterials [147]. Many 
other composites have been created, but the most 
reactive materials inside the human body have 
significant CaO and Na2O content [148]. The glass 
transition, melting commencement, endpoints, 
and temperature at which fusion occurs were all 
lowered when CaO was replaced with MgO. The 
activation energies for crystallization and glass 
transition were similarly reduced, indicating 
decreased bond length and enhanced strength. 
The thickness increased in direct proportion to the 
MgO content. The bioactivity test demonstrated 
that the greater the MgO concentration, the 
slower the reaction between the glass and 
bodily fluid [149]. The addition of MgO to a glass 
composite improves the bioactive glass’s ability 
to behave as thermoseeds during hyperthermia 
[150]. The sol-gel process was used to create 
bioactive glasses containing MgO. This addition 
aided in the acceleration of the production of 
the hydroxyapatite layer [152]. Nanoparticles 
films with different formulations of chitosan 
blend with bioactive glass, including MgO NPs, 
were produced for system development have 
applicability in guided tissue regeneration. The 
inclusion of the inorganic component in the 
chitosan matrix improves the biological response 
of the membranes [153-155]. Bioactive Glass 
containing MgO nanoparticles exhibits potent 
antibacterial properties. Furthermore, they can aid 
in the repair of broken bones [156]. Using powder 
components allows for consistent precipitation, 
resulting in crack-free bioactive glass, as opposed 
to bulk materials [158]. Bioactive Glasses infused 

with MgO have various advantages when 
used for orthopedic and dental coatings [159]. 
Bioactive glasses and ceramics have recently been 
discovered to have major uses in biomedicine, 
notably bone repair and substitution. Recent 
advances in tissue engineering have made it 
possible to improve the physical and biological 
efficiency of bioactive lenses and glass ceramics 
by including certain components into their 
compositions. These ingredients can improve the 
physiological, biological, and therapeutic qualities 
of bioactive glass [160].

MgO nanoparticles in medical imaging
Medical imaging plays n Significant part in 

providing useful information to medical sciences 
and drugs. Imaging is frequently utilized to 
detect the presence of cancer and develop the 
cure plan by studying human tissues without 
entering any equipment into the body [161, 
162]. Magnetic nanoparticles have piqued the 
interest of nanomedicine researchers due to 
their advantageous properties that can greatly 
facilitate their application in the medical field 
[163-165]. Magnetic nanoparticles can improve 
image contrast and provide higher-resolution 
scans, allowing for more precise diagnosis and 
therapy [166, 167]. The magnetic properties of 
MgO nanoparticles, as well as their ability to 
stay in the bloodstream for a long time, made 
them an ideal contrast agent for MRI [168]. Using 
MgO nanoparticles is overwhelming due to being 
Non-toxic, free of side effects, biocompatible, 
and quickly introduced into the human body 
[169]. Numerous medical applications for MgO 
Nanoparticles can be summarized through the 
Diagram as follows:

MgO cytotoxicity
In the preceding sections, we can obviously 

notice that Magnesium oxide nanoparticles are 
used in a wide range of applications and are 
widely manufactured around the world. However, 
concerns about its safety remain. 

MgO Nanoparticles displayed a hemolytic 
activity, releasing their hemoglobin content [170]. 
Being of a high positive charge, MgO nanoparticles 
produces an increment of the blood level of K+ 
as progression for their hemolytic effect [171]. 
Using alcohols such as ethanol during MgO 
nanoparticles preparation can radically eliminate 
risks of MgO nanoparticles in terms of being 
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biocompatible with the components of the human 
blood [172]. Several histological and structural 
changes in Endothelial cells can occur following 
an exposure to MgO nanoparticles [173]. Vascular 
endothelial cells suffer from dysfunctional on 
treatment with MgO Nanoparticles which may 
contribute the formation of arteriosclerosis [174]. 
MgO Nanoparticles can do a severe damage to the 
respiratory system in the picture of triggering Lung 
Inflammation [175]. Pulmonary effect of MgO 
nanoparticles is strongly related to diminishing of 
cell viability accompanied by the elevation of the 
reactive oxygen Species [176]. MgO nanoparticles 
can generate oxidative stress inside the liver cells 

which is associated with hepatocytotoxicity that 
can wholly affect all the liver functions [177]. 
The preceding toxic effect can be impressively 
eliminated when having the MgO nanoparticles 
conjugated with some natural proteins like Zein 
[178]. Glomerulus deformation is also observed 
after treatment with MgO nanoparticles which 
can lead to a renal function failure [179]. Toxic 
effects of MgO nanoparticles can be minimized to 
a low extent when low dosage is being used as per 
study carried out on the intestinal cells [180]. The 
following Figure is spotting the divergent cytotoxic 
effects of the MgO Nanoparticles.

 

  
Fig 1. Diagram Represents the Different Medical applications of MgO nanoparticles

 

Fig 2. Systematic Representation for the toxic effects of MgO nanoparticles on different human body organs
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CONCLUSION
Nanomaterials, particularly metal oxides, 

are useful in scientific research in a variety of 
domains because of their appealing features. 
In the medical field, for example, magnesium 
oxide is used. It comes in a variety of forms and 
sizes (varying from 6nm to 130nm), each with 
its own set of features. It’s antimicrobial as well 
as anticancer. MgO nanoparticles are utilised 
in the creation of biosensors, the diagnosis of 
cancer, and the mentorship of the cure plan 
through medical imaging because of their active 
catalysis property, high reaction activity, and high 
absorption capability in enzyme immobilisation. 
Bioactive glass is being developed for application 
in surgery, dentistry, bacteria inhibition, bone 
mending, and tissue engineering. Because of its 
many properties, such as antibacterial, anticancer, 
biocompatibility, nontoxicity, biodegradability, 
and low cost, research findings justify adding 
MgO nanoparticles to a variety of medically 
useful compounds. In addition, MgO appears to 
be beneficial and safe in numerous medical uses. 
Considering the potential for harmful effects as a 
result of the exposure to MgO nanoparticles, we 
have to have the most proper way the get benefit 
of MgO nanoparticles and avoid its potential 
harmful effect simultaneously. 
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