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ABSTRACT
Objective(s): Bone tissue engineering is aimed at the fabrication of bone graft to ameliorate bone defects 
without using autografts or allografts. 
Materials and Methods: In the present study, the coprecipitation method was used to prepare hydroxyapatite 
(HA) nanoparticles containing nandrolone. To do so, 12.5, 25, and 50 mg of nandrolone were loaded into 
poly(lactic acid) (PLA)/nano-HA, and the freeze casting method was used to fabricate porous scaffolds. 
The morphology, mechanical strength, wettability, porosity, degradation, blood compatibility, and cellular 
response of the scaffolds were evaluated using various tests. For further investigation, the developed scaffolds 
were incorporated into the rat calvaria defect model, and their effects on bone healing were evaluated. 
Results: The obtained results indicated that the fabricated scaffolds had the approximate porosity of 80% and 
compress strength of 6.5 MPa. Moreover, the prepared scaffolds had appropriate hydrophilicity, weight loss, 
and blood compatibility. Furthermore, the histopathological findings demonstrated that the defects filled 
with the PLA/nano-HA scaffolds containing 25 mg nandrolone healed better compared to the other study groups.
Conclusion: Therefore, it was concluded that the scaffolds containing nandrolone could be used in bone 
regeneration.
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INTRODUCTION
Bone defects affect numerous individuals 

per year and are mainly caused by age-related 
conditions, diseases or trauma. Due to the 
complications (e.g., immune rejection) and 
increased limitation in allograft and autograft 
resources, various alternative methods in tissue 
engineering have been applied to replace the 
failing or malfunctioning tissues using the 
combination of scaffolds, appropriate cells, 
and signaling molecules [1, 2]. Previous studies 
have used various techniques to fabricate bone 
scaffolds, while some methods have been 
applied more commonly in this regard, such as 
freeze casting [3], electrospinning [4], and foam 
casting[5]. Freeze casting is a practical method 
that is widely used to fabricate unidirectional 
porous polymeric or/and ceramic structures. 
In this technique, a liquid suspension freezes 
rapidly in an isolated mold using liquid nitrogen, 
followed by the sublimation of the frozen liquid 
suspension phase in vacuum conditions in order 
to produce an anisotropic porous microstructure. 
The production of lamellar structures is also 
possible in this method by controlling the growth 
direction of the ice crystals [6]. Poly (lactic acid) 
(PLA) is biodegradable aliphatic polyester, which 
has recently attracted the attention of researchers 
due to the fact that it could be derived from 
renewable resources, such as corn and sugar 
beets. On the other hand, PLA has low mechanical 
strength[7], and the addition of a small amount 
of layered silicate particles with high aspect 
ratio could enhance the mechanical and physical 
properties, thereby resulting in higher strength, 
stiffness, heat resistance, and UV resistance, 
while maintaining the transparency and impact 
properties [8, 9].Calcium hydroxyapatite (HA) 
is a mineral component inside the bones and 
teeth of humans, with the chemical formula of 
Ca(2)6Ca(1)4(PO4)6(OH)2 (P63/m) [10]. With 
its appropriate biocompatibility and sufficient 
biodegradation rate, HA is not only used in 
orthopedics as a bone graft, but it also is applied in 
drug delivery systems for controlled release [11-
13]. Moreover, HA has a proper structure for the 
incorporation of various ionic substitutions [14].

Nandrolone (ND) is a class-II anabolic androgenic 
steroid (AAS), consisting of 19 nortestosterone 
derivatives [15]. In general, AAS is a wide and 
rapid-growing group of synthetic androgens, 
which are used clinically and illicitly. ND is also 

widely used in clinical practice, surgery, radiation 
therapy, burn wound healing, and treatment 
of traumas and various forms of anemia [16]. 
Owing to its remarkable properties (e.g., tissue-
building improvement, maintenance of strength, 
muscle mass, and libido) ND is commonly used by 
athletes to improve strength, accelerate muscle 
development, promote recovery, and improve 
aggression [17]. In addition, this compound is 
prescribed for adolescents due to its anabolic 
and muscle-building properties [18-21]. It is also 
notable that ND is considered to be the most 
generally abused AAS across the world [15, 22, 
23]. to date, few studies have assessed the role 
of ND decanoate in bone defect healing despite 
its established positive effects on bone quality 
and muscular tropism [24, 25]. In the present 
study, PLA scaffolds containing nano-HA and ND 
fabricated via the freeze casting method were used 
for the local administration and evaluation of the 
bone healing activity in bone tissue engineering. 
Furthermore, the properties of the PLA scaffolds 
containing nano-HA/ND were investigated using 
various in-vitro methods, and the in-vivo bone 
healing efficacy of the scaffolds was also evaluated 
in the rat calvaria defect model.

MATERIALS AND METHODS
Applied chemicals

In this study, the materials and solvents were 
purchased from Sigma-Aldrich (St. Louis, USA) and 
Merck (Darmstadt, Germany), respectively unless 
otherwise noted.

Experimental Methods
Preparation of the HA Nanoparticles

The HA nanoparticles (nano-HA) were 
synthesized in accordance with the protocol 
described by Salehi et al. [26]. In brief, 7.48 grams 
of Ca (OH)2 was dissolved in 100 milliliters of an 
ethanol-water mixture (1:1 v/v) at the temperature 
of 33 and stirred for three hours. During 24 hours, 
6.7 grams of NH4H2PO4 in 100 milliliters of water 
was added to the Ca(OH)2 solution, and the pH of 
the prepared slurry was adjusted to 11 by adding 
NaOH (1 M). Finally, the slurry was frozen at the 
temperature of -80°C for 24 hours and freeze-
dried (Telstar, Terrassa, Spain) for 48 hours. The 
mean diameters of the nano-HA were calculated 
after three runs using a dynamic light scattering 
(DLS) device (model: K-One; Seoul, South Korea). 

Fabrication of the PLA/Nano-HA Scaffold 
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Using the Freeze Casting Technique Initially, the 
polymer solution was prepared by adding the PLA 
pellets (10 wt% for the solution) and nano-HA [27] 
to 1,4-dioxane and stirred at the temperature 
of 30°C for 24 hours at the agitation rate of 500 
rpm and sonication at room temperature for four 
hours. Afterwards, the ND decanoate was added 
to the prepared solution with the weight of 12.5, 
25, and 50 milligrams per 1,000 milligrams of 
PLA. Following that, the solution was transferred 
into the freeze casting device, frozen at the 
temperature of -196°C for six hours, and freeze-
dried (Telstar, Terrassa, Spain) for 72 hours. 
The ready-to-use scaffolds were preserved in 
vacuumed packs until the surgical procedure. 

Characterization of the Nano-HA and scaffolds
The particle size and zeta potential of the 

nanoparticles was measured using the Zetasizer 
device (model: Nano-ZS; Malvern Instruments, 
Worcestershire, United Kingdom). The analysis 
was performed 22 times at the temperature of 
25°C using the samples diluted in distilled water 
with the viscosity of 0.8872 cP.

At the next stage, the samples were coated 
by gold for 250 seconds using a sputter coater 
(Quorum Technologies, Sussex, United Kingdom) 
at the accelerating voltage of 20 kV. Following 
that, a scanning electron microscope (SEM; 
Crossbeam®, 1540XB by Zeiss) was used to 
evaluate the 3D structure and morphology of the 
scaffolds. In addition, the pore size was measured 
in a minimum of 10 pores in the fabricated 
scaffolds.

The compressive strength and modulus of the 
scaffold were examine using the mechanical testing 
machine (Santam, IRI) at the crosshead speed 
of 1 mm/min with the load cell of 1,000N. The 
samples were cylinders of approximately 10 mm 
in diameter and 20 mm in height. The wettability 
of the produced scaffolds was also determined 
using the static contact angle measuring device 
(KRUSS, Hamburg, Germany). The mean water 
contact angle value was evaluated using deionized 
water on the three sections of each scaffold. 

The liquid displacement method was used to 
evaluate the porosity of the scaffolds (Equation 1) 
[28].             

In Equation 1, V1 is the initial volume of 
absolute ethanol, V2 represents its volume after 
scaffold immersion (ethanol filling the pores), and 
V3 shows the residual volume of ethanol after 

the scaffold removal. Each scaffold was analyzed 
in triplicate. To evaluate the biodegradability of 
the scaffolds, their weight loss was monitored 
for 60 days. In brief, the samples were soaked in 
10 milliliters of simulated body fluid (SBF) at the 
temperature of 37°C, and Equation 2 was used to 
calculate the weight loss, as follows: 

           
where W1 denotes the original weight of the 
sample, and W2 is the dry weight of the sample 
after removal from SBF [3]. In addition, the mean 
value of the three samples for each scaffold was 
reported. In this research, a hemolysis assay 
(ISO 10993-4) was used to examine the blood 
biocompatibility of the produced scaffolds. To 
this end, two milliliters of fresh anti-coagulated 
human blood, which was collected from healthy 
volunteers, was diluted with 2.5 milliliters of 
normal saline. Following that, the samples were 
immersed in diluted blood (0.2 ml), and the 
mixture was incubated at the temperature of 37°C 
for 60 minutes and centrifuged for 10 minutes at 
1,500 rpm. The supernatant was transferred to a 
96-well plate, in which the optical density (OD) 
was measured at 545 nanometers using the BioTek 
Synergy 2 Multimode Microplate Reader. The mean 
values obtained from the three measurements 
were calculated. It is notable that the positive 
control samples contained 0.2 milliliter of diluted 
blood in 10 milliliters of deionized water, and the 
negative control samples contained 0.2 milliliter 
of diluted blood in 10 milliliters of normal saline. 
Moreover, the hemolysis degree was calculated 
using Equation 3, as follows:

        
where Dt indicates the OD of test samples, Dnc is 
the OD of the negative controls, and Dpc denotes 
the OD of the positive controls.

Cell culture assessment
At this stage, bone marrow-derived mesenchymal 

stem cells (BMSCs) were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM-Gibco-BRL, Life 
Technologies, Grand Island, NY), supplemented 
with 10% fetal bovine serum and antibiotics (100 
unit/ml penicillin G and 100 µg/ml streptomycin; 
Gibco-BRL, Life Technologies) and incubated with 
5% CO2 at the temperature of 37°C. The media 
was changed every 24 hours. 

For cell seeding, the scaffolds were placed in 
a 96-well plate and sterilized via ultraviolet light 
irradiation (254 nm) on both sides for 30 minutes 

Porosity (%) = 𝑉𝑉1−𝑉𝑉3𝑉𝑉2−𝑉𝑉3× 100 (1) 
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each in a laminar flow hood and seeded with 1×104 
cells. The proliferation of the cells on the scaffolds 
was assessed using the 3-(4, 5-dimethylthiazol-2-
yl)-2, 5-diphenyltetrazolium bromide (MTT) assay 
kits (Sigma-Aldrich, St. Louis, USA) in accordance 
with the instructions of the manufacturer. In this 
process, the cells in the wells of the plate without 
scaffolds were considered as controls. All the 
experiments were performed in triplicate, and 
the OD was measured using a microplate reader 
(Thermo Scientific, USA).

Animal and surgical procedures
This stage of the study was performed on 

24 adult male Wistar rats (weight: 250-300 g). 
The animals were kept in sole cages and fed ad 
libitum. The study protocol was reviewed and 
approved by the Ethics Committee of Shahroud 
University of Medical Sciences in terms of the use 
of experimental animals in scientific procedures. 

The surgical procedures were performed 
in sterile conditions in a veterinary operation 
room. General anesthesia was induced via 
the intraperitoneal injection of ketamine 
hydrochloride (100 mg/kg) and xylazine (10 mg/
kg), and the areas of the scalp covering the calvarial 
vault were shaved and prepped with povidone 
iodine. After the infiltration of local anesthesia (2% 
lidocaine with 1:100,000 epinephrine), an incision 
was made along the midline. Full-thickness skin 
and the periosteum were reflected to expose the 
cranium surface. In addition, an electrical bone 
trephine bur (Strong Co., Seoul, South Korea) was 
employed to create one circular defect (diameter: 
7 mm, depth: 2 mm) around the sagittal suture 
with normal saline irrigation. During drilling, 
excellent care was provided to protect the dura 
mater against damage. The bone defects were 
either left empty or treated with PLA/n-HA or 
PLA/nano-HA with variable levels of ND in the 
defected areas. At the end of the surgery, the 
defect sites were sutured, and meloxicam (1 mg/
kg) and enrofloxacin (10 mg/kg) were injected to 
each animal for five days. Eight weeks after the 
surgery, the animals were euthanized through the 
intravenous injection of ketamine hydrochloride 
(50 mg/kg) and xylazine hydrochloride (5 mg/kg), 
and gallamine triethiodide (1 mg/kg; Specia, Paris, 
France) was injected intracardially in order to stop 
the breathing of the anesthetized animals.

Histopathological analysis
Bone tissues were harvested eight weeks 

postoperatively, initially removed from the 
muscles and soft tissues, fixed in 10% neutral 
buffered formalin solution for 48 hours, and 
decalcified with 14% EDTA (pH: 7.4) for 28 days. 
At the next stage, the decalcified bone samples 
were dehydrated in a gradient series of ethanol, 
cleared in xylene, and embedded in paraffin. 
The sections (thickness: 5 µm) were prepared 
and stained with hematoxylin and eosin (H&E) 
and Masson’s trichrome (MT). The histological 
sections were evaluated using a light microscope 
(model: Olympus BX51; Olympus, Tokyo, Japan). 

Statistical analysis
The quantitative data were analyzed using 

one-way analysis of variance (ANOVA) and Tukey’s 
post-hoc test. In case of significant differences 
(P<0.05), data analysis was performed using 
Mann-Whitney U test. All the statistical analyses 
were carried out in GraphPad Prism software 
version 6.00 (Graphpad Prism, Inc., San Diego, CA).

RESULTS
Characterization of the HA Nanoparticles

According to the results of DLS analysis, the 
mean diameter of the HA nanoparticles was 
397.5±21.32 nanometers, and their polydispersity 
index was estimated at 0.28. Moreover, the zeta 
potential measurement indicated that the nano-
HA and nano-HA-ND nanoparticles had the mean 
surface charge of +4.03±0.62 and +17.89±0.74 
mV, respectively.

Characterization of the fabricated scaffolds
As was observed in the SEM images (Fig 

1-A), the PLA/HA-ND had the same morphology 
with irregular-shaped pores. The mean pore 
size in various samples was estimated at 260±12 
micrometers, and the minimum required pore 
size for the bone tissue engineering scaffolds was 
determined to be approximately 100 micrometers 
[29]. Therefore, all the produced scaffolds could 
meet the minimum required pore size and were 
considered suitable for bone tissue engineering. 

The mechanical properties of the scaffolds are 
presented in Table 1. According to the findings, 
the mean compress strength of PLA/HA was 
6.03±1.15 MPa, and with the addition of ND, the 
strength increased to 6.93±1.04 MPa; however, 
the difference was not considered significant.

Hydrophilicity is considered to be an important 
attribute of scaffolds in cell attachments to 
increase bone healing [30]. 
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In this study, the water contact angles of 
the PLA/HA was 72.2±1.44° (Table 1). As ND 
is a hydrophobic material, its addition to the 
scaffold increase the contact angle, while the 
difference observed between the contact angles 
of the fabricated scaffolds was not considered 
statistically significant.

Interconnected pore and high porosity 
structures are considered appropriate for cell 
proliferation and migration, vascularization, and 
new bone formation all over the 3D scaffold 
[31]. According to the porosity measurement in 
this research, the addition of ND decreased the 
porosity, while the difference was not considered 
significant (Table 1).

Tissue engineering scaffolds must be selected 
from degradable materials in order to gradually 
degrade in-vivo and become replaced by natural 

extracellular matrix (ECM) [32]. Therefore, the 
fabricated scaffolds were characterized in terms 
of in-vitro degradation in phosphate buffered 
saline for 30 and 60 days (Table 1).

According to the obtained results, the addition 
of ND was associated with the reduced weight loss 
rate. In this study, the hemolysis measurements 
indicated the release of hemoglobin into the 
plasma based on erythrocyte damage, which 
indicated the blood compatibility of the assessed 
materials. The results of the hemolytic rate 
experiment are depicted in Fig 1-B. accordingly, 
the hemolysis rate of all the samples was 
significantly lower compared to the positive 
controls, and the hemolysis rate was observed to 
increase with the addition of ND to the PLA/HA; 
however, the difference in this regard was not 
considered significant.

 Table 1. Characterization of Fabricated Scaffold

Samples Compress strength 
(MPa) 

Contact angle 
(°) 

Porosity           
(%) 

Weight-loss after 30 
days (%) 

Weight-loss after 60 
days (%) 

PLA/HA 6.03 ± 1.15 72.2 ± 1.44 86.5 ± 2.11 24.8 ± 0.26 40.9 ± 1.38 

PLA/HA-12.5ND 6.48 ±0.67 75.3 ± 0.26 82.49 ± 2.48 23.47 ± 1.59 36.16 ± 1.83 

PLA/HA-25ND 6. 61 ± 0.35 77.7 ± 0.51 81.23 ± 3.05 22.3 ± 2.11 33.5 ± 1.66 

PLA/HA-50ND 6.93±1.04 82.3 ± 1.23 77.62 ± 2.32 20.38 ± 2.64 28.37 ± 1.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig 1. A) SEM Images of PLA/HA-ND, B) Results of Hemolytic Rate Experiment, C) In-vitro Cell Culture Results (Histogram comparing 
proliferation of bone marrow cells on scaffolds 24 and 72 hours after cell seeding)
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Cell culture assessment 
The MTT assay was applied to determine the 

effects of the scaffolds on the proliferation and 
viability of the bone marrow cells. According to 
the findings, the addition of ND to the scaffolds 
resulted in the increased proliferation and viability 
of the bone marrow cells. 

Moreover, the PLA/HA-25ND scaffolds showed 
higher absorbance in the MTT assay compared to 
the other groups (Fig 1-C).

Histopathological findings
The histological analysis of the calvaria defects 

in the experimental groups was performed eight 
weeks post-injury (Fig 2), and the rate of new 
bone formation was observed to be higher in 
the defect sites treated with PLA/HA-25ND (Fig 
2-C) compared to the untreated defects and the 
groups receiving treatment with PLA/HA, PLA/HA-
12.5 ND, and PLA/HA-50 ND. In addition, the bone 
gap in the untreated group (Fig 2-A) was filled by 
a loose areolar connective tissue, which consisted 
of fibrous connective tissues (green arrow) in the 
defected area at eight weeks postoperatively. 

After eight weeks, the histopathological 
assessment indicated that the calvaria defects 
treated by PLA/HA were filled with various tissue 
types, such as fibrocartilage and cartilaginous 
tissues (Fig 2-B).

DISCUSSION
In the present study, a PLA/n-HA scaffold 

was fabricated and characterized for bone tissue 
engineering. In order to enhance the bone healing 
effects of the scaffold, various concentrations of 
ND were loaded into the scaffold, and its role in 
bone healing was determined based on in-vivo 
and in-vitro tests.

Use of biomaterials for drug delivery has 
enabled significant progress toward consistent 
bone regeneration in defect sites[33]. Pure PLA 
and pure HA scaffolds have been commonly used in 
tissue engineering [34-36].PLA is a biodegradable 
material with proper biocompatibility, which 
is widely applied in tissue engineering [37]. In 
some studies, PLA has been incorporated for the 
improvement of the mechanical properties of 
scaffolds [38]. On the other hand, HA is the major 
constituent of natural bones, and HA nanoparticles 
have been successfully embedded in the collagen 
matrix [39].Use of HA nanoparticles not only 
mimics the natural ECM, but it also is common 
in bone tissue engineering due to its bioactivity 
and osteoconductivity [40, 41]. The freeze casting 
method is considered to be an optimal process 
for the preparation of PLA/n-HA scaffolds since 
it could accommodate the incorporation of 
materials, producing highly porous, thin-walled 
architecture [6, 28]. 

 
 Fig 2. Histopathological Findings on Implanted Materials in Experimental Calvaria Defect; A) PLA/HA (yellow arrow: extensive 
fibrous connective tissue), B) PLA/HA-12.5ND (green arrow: extensive fibrous connective tissue, yellow arrow: cartilage, black arrow: 
fibrocartilage tissue and residual scaffold), C) PLA/HA-25ND (black arrow: residual scaffold, green arrow: woven bone, yellow arrow: 
fibrocartilage tissue, star: bone marrow), D) PLA/HA-25ND (black arrows: extensive cartilage tissue, yellow arrow: fibrous tissues), 
E) Negative Control (yellow arrow: extensive fibrocartilage tissue with superiority fibrous, black arrows: extensive cartilage tissue)
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The proper mechanical properties of PLA/n-
HA scaffold render it an effective material to be 
used for drug delivery. Pore size and porosity of 
scaffolds have been reported to influence bone 
formation in in-vitro and in-vivo studies [42]. In 
in-vitro studies, low porosity has been shown 
to increase cell proliferation by forcing cell 
aggregation and stimulating osteogenesis [43]. 
In contrast, in-vivo studies have demonstrated 
that high porosity and pore size could increase 
bone growth [44]. Therefore, the porosity rate 
and pore size of scaffolds should be balanced to 
enhance bone healing. According to the literature, 
the minimum pore size is approximately 100 
micrometers based on the cell size, migration 
requirements, and transport. Pore sizes near 400 
micrometers are also recommended owing to the 
enhanced new bone formation and formation of 
capillaries [42]. 

In the current research, an in-vitro degradation 
test was carried out in SBF in order to evaluate 
the characteristics and degradation rate of the 
fabricated scaffold, and several time intervals were 
set to obtain the kinetic measurements. According 
to the obtained results, all the scaffolds lost weight 
during at the determined time intervals. It is also 
notable that the degradation rate of the scaffold 
increased with the addition of n-HA, which could 
be due to the high degradation rate of HA [45].

According to the results of the present study, 
the differences observed between the study group 
after 24 and 72 hours in the MTT assay were not 
statistically significant. According to the previous 
studies in this regard, this findings could be due 
to cell contact inhibition as cells discontinue 
proliferation after reaching confluence [46, 47]. 
As BMSCs have a high proliferation rate, it seems 
that the cells reached confluence after 24 hours, 
and the differences between the study groups 
after 72 hours were not considered significant. 
However, PLA/HA-25ND was observed to have 
higher absorbance compared to the other groups.

Previous studies have confirmed the positive 
effect of anti-catabolic and anabolic drugs on 
fracture healing in osteoporotic bone models [48]. 
Despite the existence and use of ND decanoate 
for the treatment of intact bone and muscular 
deteriorations, no prior studies have specifically 
investigated its effects on bone healing. In this 
regard, the findings of Demling indicated that 
anabolic steroids are capable of releasing the beta 
growth factors that stimulate bone formation 

[49]. Another research also assessed the effects 
of ND decanoate on fracture healing [50], and ND 
decanoate was reported to enhance bone healing 
through callus formation (secondary healing) 
without the interference of fracture misalignment, 
which might complicate the interpretation of the 
obtained results [51, 52].

The histopathological findings of the current 
research are consistent with the results of the 
previous studies in this regard, indicating the 
positive effects of ND on bone healing. In the 
present study, the group treated with PLA/
HA-25ND showed significantly enhanced bone 
regeneration compared to the other groups. 
Similarly, Pansieri et al. stated that high doses of 
anabolic steroids (e.g., ND decanoate) adversely 
affected the bone regeneration process in rats 
with fibular fractures and bone loss since the 
regeneration process did not occur in the treated 
animals. Furthermore, the resorption process 
increased on the ends of the fractured stumps 
[53]. This is in line with the results of the present 
study as the PLA/HA-50ND group had lower bone 
healing compared to the PLA/HA-25ND group.

CONCLUSION
In this study, PLA/n-HA/ND scaffolds were 

fabricated and examined for bone tissue 
engineering applications. According to the results, 
the PLA/n-HA scaffold containing 25 milligrams 
of ND exhibited the highest cell proliferation and 
viability in the bone marrow. The results of in vivo 
examinations also supported the positive effects of 
the ND-loaded scaffold on bone healing compared 
to the ND-free scaffold. Therefore, our findings 
provide evidence on the possible applicability of 
ND-containing scaffolds for the treatment of bone 
defects.
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