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ABSTRACT
The usage of clinical devices in the cardiovascular treatment, hemodialyze system and other biomedical 
applications has improved recently. Direct contacts of biomaterials like poly(lactic acid) biopolymer with 
blood result in the activating of platelets, white blood cells , coagulation structure and complement cascades. 
Poly(lactic acid) is a sustainable, renewable, compostable, biobased, biodegradable, bioabsorbable , 
biocompatible polymer. This polymer has many applications in the synthesis of blood contacting mats like 
nanofibrous vascular scaffolds and hemodialyze nanosheets.
Mechanical interruption of the blood vessel wall throughout grafting of cardiovascular devices starts local 
hemostatic replies. Improving the safety of the blood contacting nanostructure grafts is a main necessity. The 
controlling of the interactions of proteins and platelets to the surface of a blood contacting biomaterial is a 
significant factor. So, the assessments of these material’s influences on blood are necessary.
This article references more than 80 articles published in the last decade and reviews the latest 
hemocompatibility assays of poly(lactic acid)  nanostructures used in the blood contacting field. 
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INTRODUCTION
Today several natural material (like cellulose 

and chitosan) and synthetic polymers (like 
polyvinyl chloride, polyethylene, poly(lactic acid)) 
and polysulfone have been applied in biomedical 
uses that involve contacting with blood stream[1].  
Some of these applications will be stated in next 
sentences[2, 3].
*Artificial organs[4, 5]. 
Biodegradable medical devices like stents 
and artificial heart valves, braided vascular 
prosthesis[6-8]. 
*Surgical sutures.
*Disposable clinical apparatus (such as blood 
pumps, peace maker, dialyzers, plasma separators)
[9-12].

The contacts of blood with a body external 
surface start a cataract of procedures which are 
described in next section.
1)Protein adsorption at the outer surface.

2)Adhesion of platelets to the body foreign surface 
through adherent proteins.
3)Activating of additional neighbored platelets.
4)The steadying of the thrombi with fibrin in a 
native net construction [13-15]. 

 
Hemocompatibility of materials

Hemocompatibility is one of the strategic 
biocompatibilities to blood communicating 
biomaterials. Hemocompatibility limited the 
medical applicability of blood contacting 
biomaterials [16-18]. 

The various processes which are important for 
analyzing of the hemocompatibility of biomaterials 
are shown in Fig 1. 

These substances come in close interaction with 
blood, which is a multifaceted “structure,” including 
55% plasma, 44% erythrocytes, and 1% leukocytes 
and platelets[19-21].

Consequently, adversative communications 
among anew advanced materials and blood should 
be widely examined to avoid motivation and 
damage of blood components [22-24]. 
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Fig 1. Scheme of the processes for assessment of the 
hemocompatibility of biomaterials

Hemocompatibility tests
The most important methods for evaluating 

the hemocompatibility of materials are illustrated 
in Fig 2[23, 25-27].

Fig 2. Important hemocompatibility tests

Poly (lactic acid) : A biobased polymer
PLA (poly(lactic acid) or polylactide)  with 

chemical formulation of (C3H4O2)n is a 
sustainable, renewable, compostable, biobased, 
biodegradable, bioabsorbable , biocompatible 
linear aliphatic thermoplastic polyester(Fig 3) 
[28-32]. PLA manufactured from 100% renewable 
resources like corn, starch, sugar cane, wheat, 
sweet potato and rice [28, 33, 34]. 

The strategic advantages of PLA are the 
lower energy consumption required and lower 
greenhouse gas emission during production[35, 
36]. PLA biodegrades to water and CO2 at the end 
of its life cycle [37]. 

The PLA market is estimated to spread 5.2 
billion US dollars in 2020 for all of its industrial 
usages [38] . The chief uses are separated 
into areas for instance packaging, agriculture, 
electronics, textiles and biomedical such as tissue 
engineering, wound dressing, drug delivery 
systems, antibacterial mats, food packaging [39-
41]. Poly (lactic acid) is a very important biopolymer 
for its usages in biomedical applications [29, 42-

44]. PLA mats can be applied therapeutically or 
diagnostically [45-48]. 

Fig  3. Poly (Lactic Acid) : A biobased polymer

PLA nanostructures (like nanofibers[49-52], 
nanoparticles [53, 54], nanosheets[55, 56], 
nanocomposites[57, 58] and nanospheres[59]) 
have been extensively used in the field of 
biotechnology procedures[60, 61]. 

These PLA nanostructures have been improved 
to bio-mimic heparin via chemical grafting, plasma 
deposition, radiation and self-assembly [62-64]. 

The natural blood vessel barrier has exceptional 
topography [65-67]. Geometrical statistics of the 
PLA nanostructures have been designed to bio-
mimic the construction of blood vessels wall to 
catch respectable hemocompatibility[26, 68-70].

The subjects of this article chiefly focus on 
various blood compatibility evaluations of different 
types of PLA nanostructures materials like PLA 
nanosheets, nanofibers and nanocoatings in blood 
contacting systems and security assessments.

in vivo and in vitro analyzes of PLA nanostructures 
for the hemocompatibility assessment 

In 2019, Da Silva et al [71], evaluated the 
hemocompatibility of two various dimension PLA 
nanoparticles (PLA/A and PLA/B), created via two 
approaches. After production, PLA/A nanoparticles 
mean diameter (187.9 ± 36.9 nm) was greater 
than PLA/B (109.1 ±10.4 nm). Irrespective of size 
variances, none of the PLA nanoparticles showed 
an inflammatory possible or a hemolytic activity in 
human blood. 

Chen et al [72], fabricated PLA nanofibrous 
scaffolds for bone repair. The researchers use 
a new in situ polymerization thermal induced 
phase separation technique to construct PLA 
scaffolds with using polyaniline nanoparticles. 
The outcomes established that the corporation of 
polyaniline in PLA nanofibrous scaffold reduced 
the hemolytic activity compared to virgin PLA. 
Consequently, PLA nanofibrous scaffolds hold 
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exceptional hemocompatibility.
 In a novel work in 2018[73], PLA nanofibrous 

scaffolds with various topographies (smooth, 
porous) fabricated for cardiovascular applications. 
PLA nanofibers of all three collections displayed 
acceptable hemolytic percentage (HP < 5%). 
In contrast, no morphological variations were 
detected in red blood cells cultured on smooth 
and porous PLA nanofibers. Porous nanofibers 
displayed outstanding anti thrombogenic property 
and adhered reduced platelets and preserved the 
morphology of native platelets. Though, smooth 
PLA nanofibers were originated to activate the 
platelets and distort the red blood cell membrane 
reliability. Therefore, the PLA nanofibers with 
porous constructions afford a perfect topography 
for time free hemocompatibility[73]. 

PLA membranes with nanoporous construction 
were advanced for hemodialysis via phase 
inversion by Gao et al[74]. Heparin was restrained 
to PLA membrane external by the durable 
adhesion capacity of dopamine. The in vitro 
outcomes revealed that surface heparinization 
enhanced the hemocompatibility of PLA 
membrane, repressed the adhesion of platelet, 
prolonged plasma recalcification time, and also 
reduced hemolysis ratio. In the other exploration 
in 2018[40], PLA nanosheets were produced for 
hemodialysis applications. For improving the 
hemocompatibility of PLA nanosheets, dopamine-
g-carboxylated graphene oxide (DA-g-GOCOOH) 
was manufactured and then restrained on PLA 
sheets using a mussel inspired adhesion technique. 
The noteworthy enhancement of hydrophilicity 
and electronegativity of the PLA membranes 
efficiently improved the surface adhesion of 
platelets, elongated the decalcifications time and 
decreased the hemolysis ratio under 0.3%[40].

 In a research in 2018[19], copolymer of PLA 
and poly(caprolactone) (PLCL) were electrospun 
to nanofibrous scaffolds for vascular regeneration.  
PLCL did not reason noticeable hemolysis.  It was 
displayed that inherent coagulation pathway 
was continued after incubation with PLCL. 
Thrombogenicity valuation of testers exposed 
great thrombogenic possessions of materials 
that were similar to high amount of collagen 
thrombogenicity. The quantity of platelet 
activation was reliant on chemical composition 
and surface morphology of verified samples. 

Li et al[75], advanced an innovative 
anticoagulant PLA nanoporous membrane via 

immobilizing hirudin via the hydrogen bonding 
communication. 

The anti-clotting commotion of PLA membrane 
improved with the hirudin amount. 

The improved hemocompatibility were 
definitely represented with the blood concretion 
four objects (APTT, PT, TT and FIB), mostly owing 
to the surface immobilization of hirudin.

In a different investigation in 2017[76], 
fluorescent nanoparticles   were selected, 
which were attained using as initial material 
a pegylated PLA/polyaspartamide copolymer. 
The nanoparticles amounts near the blood 
wall increases with advancing pressure drop, 
individually of red blood cells concentration, and 
that the propensity for Fluorescent nanoparticles 
margination reduces with improved hematocrit.  

Wang et al[77], reported 1 stage immobilization 
of heparin nanocoating on PLA membranes by 
means of initiated chemical vapor deposition 
(iCVD) technique for improved hemocompatibility. 
The nanocoating presented on the PLA membrane 
surface using the cross linking of P(MAA-EGDA). 
The P(MAA-EGDA) covered PLA membranes 
indicated repressed platelet adhesion and long 
clotting time. The outcomes established that 
the nanocoating of P(MAA-EGDA) by the use 
of iCVD technique meaningfully improved the 
hemocompatibility of PLA membranes.

In another work by means of Lv et al.[78], 
carboxy methyl chitosan was crushed to 
nanopowder (NCMC). 400 mg NCMC was positively 
electrospun to nanofibers with the associate of 4 g 
PLA to formulate PLA/NCMC nanofibrous nets. The 
existence of NCMC improved the spinnability of 
PLA rendering to the electrospinning factors. Cross 
linked PLA/NCMC nets communicated respectable 
blood compatibility consistent with the outcomes 
of experiments.

 Weijie et al[79], used coaxial electrospinning 
method for combining cistanche polysaccharide 
(CDPS) with PLA so as to prepare nanofibrous 
vascular scaffolds.

 Compared to natural tissues, PLA/CDPS coaxial 
scaffolds displayed outstanding biomechanic 
possessions and hemocompatibility. 

Shao et al[80], created nanofiber bone 
scaffolds via electrospinning technique from 
blending of poly(l-lactic-co-glycolic acid), tussah 
silk fibroin (TSF), and graphene oxide.

Hemocompatibility assays demonstrated that 
these scaffolds have admirable hemocompatibility. 
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In a different investigation, Shao et al[81], 
constructed a unique bone scaffold containing of 
multilayer nanofiber fabrics via weaving nanofiber 
yarns of PLA and TSF. 

The results displayed that PLA, PLA/TSF 
woven scaffolds, and PLA/TSF nonwoven scaffolds 
represented exceptional hemocompatibility. He et 
al [82], applied folic acid modified poly(ethylene 
glycol)/poly(lactic-co-glycolic acid) to encapsulate 
cisplatin and paclitaxel drug molecules for lung 
cancer treatment. Blood compatibility examines 
and accompaniments examinations exposed 

that these nanoparticles did not prompt blood 
hemolysis, blood clotting, or complement 
activation[82]. Chen et al.[83] fabricated PLA/
curcumin nanofibrus membranes. Curcumin 
with various quantities (1, 3 and 5 wt%) was 
overloaded to the PLA nanofibers for exploring its 
anticoagulant possessions as a drug eluting stent. 
The in vitro blood compatibility investigations 
of stents exposed that the blood compatibility 
of PLA/curcumin mats is greater than the virgin 
PLA membrane, and the blood compatibility 
suggestively advances with curcumin amount.

Table 1. Blood coagulation assessments of various PLA nanostructures

PLA nanostructure Blood Clotting 
Time (s) 

Plasma          
  Re-calcification 

Time (s) 

Activated Partial 
Thrombin Time(s)  

Thrombin 
Time(s)  

Ref. 

PLA nanoporous membrane ― ― 43 14.7 [77] 
PLA/PVP nanoporous membrane ― ― 42 14.7 [77] 
(PLA+PVP)/P(MAA:EGDA 8:1 ) nanocoating ― ― 52 16.1 [77] 
(PLA+PVP)/P(MAA:EGDA 12:1) nanocoating ― ― 53 16.1 [77] 
(PLA+PVP)/P(MAA:EGDA 16:1)  nanocoating ― ― 54 16.5 [77] 
PLA/P (MAA:EGDA 8:1 )  nanocoating ― ― 54 16.4 [77] 
PLA/P (MAA:EGDA 12:1 )  nanocoating ― ― 57 17.5 [77] 
PLA/P (MAA:EGDA 16:1 )  nanocoating ― ― 58 17.4 [77] 
PLGA/PEG nanoparticles 3.9 150 37 14 [82] 
PLGA/PEG/FA(Cisplatin : Paclitaxel = 2:1) 
nanoparticles 

4.1 152 36 13 [82] 

PLGA/PEG/FA(Cisplatin : Paclitaxel = 1:2) 
nanoparticles 

4.2 148 36 15 [82] 

PLA nanoporous membrane ― 223 ― ― [74] 
Polysulfone nanoporous membrane ― 272 ― ― [74] 
PLA/Polydopamine  (2.0 g/L) nanoporous 
membrane 

― 230 ― ― [74] 

PLA/Polydopamine (1.0 g/L) nanoporous 
membrane 

― 244 ― ― [74] 

PLA/Polydopamine  (0.5 g/L) nanoporous 
membrane 

― 240 ― ― [74] 

PLA/Polydopamine(2.0 g/L)/heparin 
nanoporous membrane 

― 278 ― ― [74] 

PLA/Polydopamine(1.0 g/L)/heparin  
nanoporous membrane 

― 280 ― ― [74] 

PLA/Polydopamine(0.5 g/L)/heparin  
nanoporous membrane 

― 270 ― ― [74] 

PLA nanocoating ― 120 ― ― [40] 
PLA/(DA-g-GOCOOH) nanocoating ― 130 ― ― [40] 
PLA/(DA-g-GOCOOH)  (0.5 mg mL_1) 
nanocoating 

― 160 ― ― [40] 

PLA/(DA-g-GOCOOH)  (1 mg mL_1) nanocoating ― 180 ― ― [40] 
PLA/(DA-g-GOCOOH)  (2 mg mL_1) nanocoating ― 220 ― ― [40] 
Smooth PLA nanofibers ― 230 ― ― [73] 
Porous PLA nanofibers ― 270 ― ― [73] 
PLA 3D nanofibers ― ― 28.6 ± 0.5 19.5 ± 0.2 [78] 
PLA nanofibers ― ― 38.25 13.10 [83] 
PLA/Curcumin(1%) nanofibers ― ― 36.91 12.94 [83] 
PLA/Curcumin(3%) nanofibers ― ― 38.58 13.01 [83] 
PLA/Curcumin(5%) nanofibers ― ― 42.60 13.86 [83] 
PLA/Carboxymethyl chitosan (200-800 nm : 
3D) nanofibers 

― ― 31 ± 0.3 19.3 ± 0.3 [78] 

PLA/Carboxymethyl chitosan (200-700nm : 
curve) nanofibers 

― ― 33.3 ± 0.4 20.3 ± 0.4 [78] 

PLA/Carboxymethyl chitosan (200-500 nm : 
curve) nanofibers 

― ― 31.2 ± 0.6 19.4 ± 0.4 [78] 

PLA/Carboxymethyl chitosan (violently 
distributed) nanofibers 

― ― 32 ± 0.5 19.6 ± 0.4 [78] 

PLCL nanofibers ― ― 28.2 11.8 [19] 
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Table 2. Blood anti-coagulation assessments of various PLA nanostructures

 
PLA nanostructure 

Anti-coagulant Property (OD) 
 (According to the time) 

 
Ref. 

0 min 10 
min 

20 
min 

30 
min 

40 
min 

50 
min 

60 
min 

2           
Hours 

96 
Hours 

PLA nanofibers ― ― ― ― ― ― ― 0.107±0.011 ― [79] 
PLA/Cistanche polysaccharide (1%) 
nanofibers 

― ― ― ― ― ― ― 0.093±0.005 ― [79] 

PLA/Cistanche polysaccharide (3%) 
nanofibers 

― ― ― ― ― ― ― 0.091±0.006 ― [79] 

PLA/Cistanche polysaccharide (5%) 
nanofibers 

― ― ― ― ― ― ― 0.104±0.004 ― [79] 

PLA/Cistanche polysaccharide (7%) 
nanofibers 

― ― ― ― ― ― ― 0.094±0.003 ― [79] 

Smooth PLA nanofibers 0.085 0.075 0.06 0.055 0.05 0.047 0.045 ― ― [73] 
Porous PLA nanofibers 0.0115 0.065 0.065 0.063 0.061 0.057 0.055 ― ― [73] 
PLCL nanofibers 0.5 ― ― ― ― ―  1.75 0.2 [19] 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Hematology and platelets assessments of various PLA nanostructures

PLA Nanostructure Contact 
Angle 

Hemolysis 
Ratio (%) 

Platelets Adhesion 
Number  

Rate of Platelet 
Aggregation (%) 

Inhibition Rate of Platelet 
Aggregation (%) 

Ref. 

PLGA/Poly(methyl vinyl ether-co-maleic acid)/montelukast 
nanofibers 

― ― 1×106 /mm2  ― ― [87] 

PLA/Polyaniline (5%) nanofibers ― 5 ― ― ― [72] 
PLA/Polyaniline (10%) nanofibers ― 2.5 ― ― ― [72] 
PLA/Polyaniline (15%) nanofibers ― 3.5 ― ― ― [72] 
PLA nanofibers ― 7 ― ― ― [72] 
PLGA/MWCNT(Vertically aligned) nanocomposite ― ― 22×1015/mm2 ― ― [85] 
PLGA/MWCNT (Randomly dispersed pristine) nanocomposite 73 ― 10×1015/mm2 ― ― [85] 
PLGA./MWCNT (Randomly dispersed etched) nanocomposite 50 ― 25×1015/mm2 ― ― [85] 
PLGA 82 ― 12×1015/mm2 ― ― [85] 
PLA nanoporous membrane 93 ― ― ― ― [77] 
PLA/PVP nanoporous membrane 87 ― ― ― ― [77] 
(PLA+PVP)/P(MAA:EGDA 8:1) nanocoating 73 ― ― ― ― [77] 
(PLA+PVP)/P(MAA:EGDA 12:1) nanocoating 72 ― ― ― ― [77] 
(PLA+PVP)/P(MAA:EGDA 16:1) nanocoating 70 ― ― ― ― [77] 
PLA/P(MAA:EGDA 8:1 ) nanocoating 75 ― ― ― ― [77] 
PLA/P(MAA:EGDA 12:1) nanocoating 74     [77] 
PLA/P(MAA:EGDA 16:1) nanocoating 72     [77] 
PLGA nanofibers 108.3±6.9 0.9±0.3 ― ― ― [80] 
PLGA/Tussah silk fibroin nanofibers 64.2 ± 4.5 1.3±0.2 ― ― ― [80] 
PLGA/Tussah silk fibroin/Graphene oxide nanofibers 56.1 ± 4.2 1.8±0.4 ― ― ― [80] 
PLA nanofibers 132.3±1.6 0.9 ±0.3 ― ― ― [81] 
PLA/Tussah silk fibroin nanofibers (Fabric) 71.3 ± 2.7 1.3 ±0.2 ― ― ― [81] 
PLA/Tussah silk fibroin nanofibers (Nonwoven) 72.1±1.1 1.8 ±0.4 ― ― ― [81] 
PLA nanofibers ― 3.72±2.07 ― ― ― [79] 
PLA/Cistanche/Polysaccharide (1%) nanofibers ― 1.83±1.18 ― ― ― [79] 
PLA/Cistanche/Polysaccharide (3%) nanofibers ― 1.62±1.22 ― ― ― [79] 
PLA/Cistanche/Polysaccharide (5%) nanofibers ― 3.27±1.17 ― ― ― [79] 
PLA/Cistanche Polysaccharide (7%) nanofibers ― 1.98±0.84 ― ― ― [79] 
PLGA/PEG nanoparticles ― 0.3 ― ― ― [82] 
PLGA/PEG/FA (Cisplatin : Paclitaxel = 2:1) anoparticles ― 0.6 ― ― ― [82] 
PLGA/PEG/FA (Cisplatin : Paclitaxel = 1:2) anoparticles ― 0.45 ― ― ― [82] 
PLA nanoporous membrane ― 3.24 ― ― ― [74] 
PLA/Polydopamine  (2.0 g/L) nanoporous membrane ― 2.30 ― ― ― [74] 
PLA/Polydopamine (1.0 g/L) nanoporous membrane ― 2.62 ― ― ― [74] 
PLA/Polydopamine  (0.5 g/L) nanoporous membrane ― 2.10 ― ― ― [74] 
PLA/Polydopamine(2.0 g/L)/Heparin  nanoporous membrane ― 1.46 ― ― ― [74] 
PLA/Polydopamine(1.0 g/L)/Heparin  nanoporous membrane ― 1.68 ― ― ― [74] 
PLA/Polydopamine(0.5 g/L)/Heparin  nanoporous membrane ― 1.36 ― ― ― [74] 
PLA 38 µg/mL nanoparticle ― 0.05 ― ― ― [71] 
PLA 50 µg/mL nanoparticle ― 0 ― ― ― [71] 
PLA 200 µg/mL nanoparticle ― 0.3 ― ― ― [71] 
PLA 250 µg/mL nanoparticle ― 0.25 ― ― ― [71] 
PLA 75 µg/mL nanoparticle  0.1 ― ― ― [71] 
PLA 100 µg/mL nanoparticle ― 0.05 ― ― ― [71] 
PLA 300 µg/mL nanoparticle ― 0.2 ― ― ― [71] 
PLA 400 µg/mL nanoparticle ― 0.25 ― ― ― [71] 
PLA nanocoating ― 10.5 23 (105, cell per cm2) ― ― [40] 
PLA/(DA-g-GOCOOH) nanocoating ― 6 28 (105, cell per cm2) ― ― [40] 
PLA/(DA-g-GOCOOH)  (0.5 mg mL_1) nanocoating ― 0.2 15 (105, cell per cm2) ― ― [40] 
PLA/(DA-g-GOCOOH)  (1 mg mL_1) nanocoating ― 0.1 11 (105, cell per cm2) ― ― [40] 
PLA/(DA-g-GOCOOH)  (2 mg mL_1) nanocoating ― 0.05 3 (105, cell per cm2) ― ― [40] 
Smooth PLA nanofibers ― 1.2 ― ― ― [73] 
Porous PLA nanofibers ― 3.8 ― ― ― [73] 
PLA 3D nanofibers ― ― ― ― ― [78] 
PLA nanofibers ― ― ― 28.42 9.43 [83] 
PLA/Curcumin(1%) nanocomposite ― ― ― 15.80 49.65 [83] 
PLA/Curcumin(3%) nanocomposite ― ― ― 14.60 53.47 [83] 
PLA/Curcumin(5%) nanocomposite ― ― ― 11.68 62.78 [83] 
PLA nanocoating 81 ± 0.8 ― 119±5 (×103/mL) ― ― [74] 
PLA/heparin nanocoating 69 ± 0.3 ― 142±3(×103/mL) ― ― [74] 
PLA/NH2 nanocoating 79 ± 1.2 ― ― ― ― [74] 
PLGA nanocomposite 93.43 ― ― ― ― [86] 
PLGA/CNT nanocomposite 64.94 ― ― ― ― [86] 
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 Furthermore, PLA/curcumin mat can efficiently 
elongate the blood coagulation time compared 
with the plasma, and the blood coagulation time 
of PLA/curcumin mats increases expressively as 
curcumin amount improving. 

Sharkawi et al[84], defines a way for 
immobilizing heparin via covalent bonding to the 
surface of PLA film with the purpose of display 
enhanced hemocompatibility. Carboxyl groups 
existent in heparin molecules were motivated by 
means of reacting with N-hydroxy-succinimide 
and permitted for rejoining to free amino 
groups formed at the surface of poly(dl-lactic 
acid) films with controlling aminolysis. Platelets 
adhesion displayed fewer platelet adhesions on 
heparin modified PLA films besides to conserved 
morphology. 

PLGA nanocomposites with multi walled carbon 
nanotubes (PLGA/MWCNT) were constructed 
with two various nanotube orientations. PLGA/
MWCNT nanocomposite holding vertically aligned 
nanotubes displays very low stages of fibrinogen 
adsorption and platelet adhesion. Platelet 
adhesion demonstrates a respectable association 
with the existence of ACOOH groups and seems 
to be delicate to the topographic structures of the 
nanocomposites[85]. 

Poly(lactic-co-glycolic-acid)/carbon nanotube 
(PLGA/CNT) is investigated by Koh et al. [86] 
as a substance for fabricating artificial blood 
prostheses.

These nanocomposites were manufactured 
with an electrostatic layer by layer deposition 

method, wherein sheets of carbon nanotubes 
were adsorbed on a PLGA film. A noteworthy 
decrease of adhesion is detected on the PLGA/
CNT composite, in addition to the lack of platelet 
activation. In contrast, both platelet adhesion and 
platelet activation are perceived on control testers. 

Blood coagulation of PLA nanostructures
The blood coagulation of different PLA 

nanostructures is discussed in Table 1 and 2.

Hematology of PLA nanostructures
Hematology and platelets assessments of 

various PLA nanostructures are reported in Table 3.

Thrombosis assessment of PLA nanostructures 
using SEM technique

Fig 4 demonstrate the thrombosis assessment 
(SEM images of platelet adhesion) of various PLA 
structures by SEM technique.

Conclusions and future perspectives 
Bioresource materials are considered as 

exceptional applicants for developing biomedical 
substances which would moreover decrease the 
fuel source materials in clinical uses. Among them, 
PLA has been predictable to play a main character 
for achieving such an objective especially in 
blood contacting devices for cardiovascular and 
hemodialyze applications. The review has widely 
offered consequences of assessing PLA nanomats 
which are in direct contact with blood structure 
for avoiding the toxic effects. 

 

Fig 4 . Platelets adhesion on PLA nanostructures: a) PLA/P(MAA:EGDA 8:1) nanocoating, b) (PLA+PVP)/P(MAA:EGDA 8:1) nanocoating, 
c) PLA/P(MAA:EGDA 16:1) nanocoating, d) randomly dispersed pristine PLGA/MWCNT nanocomposite, e) vertically aligned PLGA/
MWCNT nanocomposite, f) PLGA/Poly(methyl vinyl ether-co-maleic acid)/montelukast nanofiber, g) PLA smooth nanofiber, h) PLA/

cistanche polysaccharide nanofiber[17, 73, 87, 88]
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