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ABSTRACT
Exosomes, which are one of the extracellular vesicles, are considered necessary tools of intracellular 
communication that abundant in our body in physiological and pathological conditions with a diameter 
of 30-150 nm. The nanotubes, dendrimeric, metallic, nanoparticles have been used in the medical area.  
However, these nano-based systems are lack of standardized manufacturing methods and therefore, it has 
toxic effects on cells. The delivery methods of growth factors, exosomes, cells, and engineered tissues have 
notably advanced in the medical area. The fact that they contain bioactive molecules such as protein, lipid, 
RNA and DNA revealed that these structures may play an important role in the treatment of cancer. Here, 
we review work on the contribution exosomal mediated cancer treatment in two main topics as exogenous 
molecule carrier and self-use. We also emphasize the development of exosome-based systems by referring to 
the advantages and disadvantages of using exosomes and future perspectives in cancer therapy.
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INTRODUCTION
Nanoparticles are widely used systems for 

controlled release and targeted delivery. The 
metallic, polymeric, carbon-based, lipid-based 
nanoparticles, etc., have a great potential in imaging 
or therapeutic drug delivery [1-6]. However, these 
synthesized nanoparticles have cytotoxicity, 
loss of targeting capacity, and rapid clearance 
by the reticuloendothelial system (RES) [7-12]. 
By contrast, exosomes are small nanovesicular 
carriers that transport cargo and they are related 
to the pathology of diseases. Furthermore, they 
can passage the blood-brain barrier (BBB) for 
brain-targeted drug delivery [13, 14]. Exosomes 
have drug loading and signal-carrying capacity; 
these properties of them have shown great 
potential in recent years. Nowadays, the use 
of exosomes as targeted therapeutical carriers 
have increased in the literature. Dhayapulay and 
Kanapathipillai prepared heat shock protein 90 
(HSP90) inhibitor geldanamycin-loaded exosomes 
and applied it to cancer cells. Therefore, exosomes 
can be carrier transport therapeutic drugs and 

used to treat diseases such as cancer and other 
diseases [15, 16]. This small nanovesicle, which 
was first discovered in the 1980s, was defined 
as cellular waste resulting from cell damage, or 
by-products of cell homeostasis [17]. But with 
recent studies, it was seen that this structure has 
many features such as the regulation of immune 
system response, intercellular communication, 
signal transmission, and genetic material 
transfer [18-20]. The structure takes shape with 
the inward budding of the multivesicular body 
(MVB) membrane and releases by practically all 
eukaryotic cells [21]. It is an average diameter 
of 30-150 nm and has membrane and cytosolic 
components that include proteins, lipids, DNA, 
and RNAs [22-25]. Undoubtedly, being nano-
sized and containing nucleic acid adds a natural 
carrier feature to exosomes. In particular, their 
biological distributions and high plasma stabilities 
offer the possibility of use for tumor therapeutic 
applications. 

The first therapeutic avenue is to use exosomes 
as an exogenous molecule carrier. In a study 
conducted in 2019, Wang et al. demonstrated that 
macrophage-derived exosomes that loaded with 
paclitaxel display strong anti-tumor activity [26]. 
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In another study, Tomasetti et al. reported that 
intestinal-type sinonasal adenocarcinomas-derived 
exosomes that loaded with miR-126 inhibited cell 
growth and the tumorigenic potential of sinonasal 
cancer cells [27]. In this way, anti-cancer drugs, 
miRNAs, and functional RNAs are loaded into 
exosomes using highly efficient exosomal loading 
methods and carried out the treatment. 

Another therapeutic avenue is to use exosomes 
derived from tumors or other cells directly. Tumor-
originated exosomes have many roles that affect 
tumor growth and development. These exosomes 
produce immune responses against tumor cells 
as they have the molecules needed for antigen 
presentation such as MHC/peptide complex [28]. In 
this context, the same year, Escudier et al. and Morse 
et al. performed a phase I clinical study in dendritic 
cell-derived exosomes (Dex) [29, 30]. Evidence has 
revealed that Dex may stimulate tumor cell-specific 
cytolysis and having the potential to produce 
immune responses against tumor cells. Similarly, 
Dai et al. reported that autologous acid-derived 
exosomes (Aex) obtained from colorectal cancer 
patients induced tumor immunity effectively [31]. 
No doubt, exosomes represent a promising solution 
in nanotechnology with their high drug loading 
capacity and specificity, low immunogenicity 
characteristic, and non-cytotoxic impact. 
Nevertheless, the clinical implementations of 
exosomes are still in the beginning stage due to their 
isolation and characterization problems. Though 
lately established technologies can decrease these 
problems, additional challenges include inadequate 
quality control and standardization across the study 
groups. That is why we need to understand the 

exosome formation and the mechanism in depth.
In this review, we have examined under two 

main headings the use of exosomes in cancer 
treatment: (a) use of exosomes on their own and 
(b) use of exosomes as an exogenous molecule 
carrier. Additionally, in the review, exosome 
characterization and composition, biogenesis 
and functions, advantages and disadvantages are 
summarized. As a result, we provide an overview 
of exosome studies with an emphasis on current 
developments in exosome-mediated cancer 
targeting therapy.

An overview of the exosome biology
The endosomal pathway is completed by 

two basic formations classified as early and 
late [32]. Exosomes occur within this pathway 
during the maturation of endosomes. While 
the early endosome matures towards the late 
endosome, the endosome membrane makes 
a series of inward recesses and forms many 
exosomes/intraluminal vesicles (ILVs) structures 
[21]. These maturing late endosomes have been 
defined as multivesicular endosomes (MVEs) or 
multivesicular bodies (MVBs) by Sotelo and Porter 
in the 1959s [33]. Then, MVBs/MVEs fuse with the 
plasma membrane, and exosomes release into 
the extracellular environment [34,35]. During this 
process, many components are the endosomal 
sorting complexes required for transport (ESCRT), 
tetraspanins, signaling transducing adaptor 
molecule (STAM1), Alg-2 interacting protein X 
(Alix), Hrs, various lipid-modifying enzymes, tumor 
susceptibility gene 101 (Tsg101), etc., that involve 
in the formation of MVEs and ILVs [36-39]. 

Fig 1. Exosome biosynthesis and other extracellular vesicles forms
(a) exosome biogenesis, (b) transport of MVBs to the plasma membrane, and (c) fusion of MVBs with the plasma membrane. 

In the endocytic pathway, extracellular vesicles (EVs) are released such as apoptotic bodies, microvesicles (MVs), and exosomes.  MVs 
are 100-1000 nm in size and have a heterogeneous population. Apoptotic bodies are 1000-5000 nm in size and are closed structures 
with higher sucrose gradient density than MVs [40]. However, exosomes have a heterogeneous population in contrast to the known 

exosome definition: large-exosome (90-120 nm), small-exosome (60-80 nm), and non-membrane exomer (<50 nm) [41, 42]
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According to their endosomal origin, exosomes 
from different cell types contain proteins 
involved in membrane transport and fusion, 
MVEs biogenesis, and adhesion proteins such as 
integrins and specific tetraspanins. Nevertheless, 
heat shock proteins and cytoskeletal proteins 
are part of the “signature” of exosomes [22-24]. 
Exosomes contain not only these proteins but also 
many mRNAs that can incorporate into recipient 
cells. Studies have shown that there are a lot of 
types of RNA are present in exosomes, including 
microRNA (miRNA), messenger RNA (mRNA), 
ribosomal RNA (rRNA), Y-RNA, vault RNA, long 
non-coding RNA (lncRNA), circular RNA (circRNA) 
and transfer RNA (tRNA) [43-47]. In particular, 
there are many exosomal miRNAs which are 
used as prognostic markers (e.g., miR-224 in 
hepatocellular carcinoma [48], miR-301a and miR-
23a in colorectal cancer [49], miR-375 and miR-
1307 in ovarian cancer [50]. Also, some exosomal 
miRNAs (e.g., miR-214, miR-29a, miR-1, miR-126, 
and miR-320) have been reported to participate 
in exocytosis, angiogenesis, hematopoiesis, and 
tumorigenesis [51]. However, recent developments 
have shown that exosomes are rich in lipids such 
as cholesterol, sphingomyelin, etc. No doubt, the 
lipid and DNA content of exosomes, like protein 
and RNA biomarkers can serve as the molecular 
signature for disease diagnosis and prognosis.

With the clinical use of exosomes, it has become 
imperative to optimize their isolation method for 
maximum yield, purity, and test reproducibility. 
Interestingly, although exosomes found in almost 
all body fluids including cerebrospinal fluid [52], 
blood, urine [53], semen [54], amniotic fluid 
[55], saliva [56], and breast milk [57], high purity 
exosome isolation is not yet available. For instance, 

though differential ultracentrifugation is currently 
considered as the gold standard of exosome 
isolation, exosomes isolated by using this method 
often contain proteins and lipoproteins. Likewise, 
ultrafiltration can suffer from clogging and vesicle 
trapping even though it is a rather popular 
exosome isolation technique [58]. Also, exosomes 
are isolated by using immune affinity capture [59], 
size exclusion chromatography [60], commercially 
available kits, or microfluidic technologies. But, 
techniques inside this group also bring about a 
unique set of disadvantages and advantages to 
exosome isolation.

Exosome-mediated cancer treatment
Chemotherapy, radiotherapy, and 

immunotherapy methods are used as conventional 
treatment methods in cancer treatment. But, 
off-target effects and treatment resistance are 
significant problems for these methods. Thus, 
effective drug delivery systems that can deliver 
drugs specifically to the tumor will positively affect 
the treatment results. In recent years, several 
studies have shown that exosomes can be used to 
treat many types of cancer [29-31].

Use of exosomes on their own
The molecular composition of exosomes 

generally reflects the parental-cell-type specificity. 
Notably, cancer-derived exosomes include cancer-
specific antigens expressed in the parental cancer 
cells. Studies have shown that in most cancer-
derived exosomes have cancer antigens such as 
Melan-A [61], Silv [62], carcinoembryonic antigen 
[63], and mesothelin [64]. Except for the common 
antigens, cancer-derived exosomes also contain 
the MHC/peptide complex that reflects their 

Table 1. Common molecular content of exosomes

 
 
 

Exosome Content Examples 

 
Proteins 

Tetraspanin: CD9, CD63, CD81, CD82 
Heat shock proteins: hsp60, hsp70, hsp90 

Membran transport and fusion proteins: GTPase, annexin 1-2 
Alix, Tsg101 

Signal proteins: EGFR, CDC42, ARF-1, β-Catenin etc., 
Cytoskeletal proteins: Actin, tubulin, myocin etc., 

Lipids 
Phosphatidylserine (PS) 

Cholesterol 
Sphingomyelin (SM) 

 
Nucleic acids 

mRNA 
miRNA 

mitochondrial DNA (mtDNA) 
chromosomal DNA 
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cellular origins. Exosomes derived from these 
antigen-presenting cells (APCs) play an important 
role in the regulation of the antitumor immune 
system [65-67]. Undoubtedly, this suggests 
exosome-based cancer vaccines can be developed 
by releasing antigens by APCs. Indeed, dendritic 
cells, the antigen-presenting cells of the immune 
system have been used in the immunotherapy 
method due to their potential to activate T cells.  
Wolfers et al., have shown in the in vitro model 
system, exosomes secreted by tumor cells include 
tumor antigens and have dendritic cells. In the 
study it was observed that induced potent CD8+T 
cell-dependent antitumor effects on mouse tumors 
of dendritic cells derived from exosomes (Dex) 
[62]. In another study, Escudier et al., reported the 
applicability of the Phase I experiment using the 
autologous Dex for the immunization of stage III/
IV melanoma patients. Results have revealed that 
Dex is capable of supporting tumor cell-specific 
cytolysis and eradicating the growth of murine 
tumors [29]. A similar study has performed using 
the second generation of Dex, exosomes derived 
from interferon (IFN)-γ-maturated dendritic 
cells (IFN-γ-Dex) pulsed with tumor-associated 
antigenic peptides. In the study, IFN-γ-Dex has 
seen to increase the natural killer cell functions 
and related antitumor immunity in the NKp30-
dependent manner [68]. With the studies carried 
out in recent years, to further improve the 
functionality and effectiveness of Dex, engineered 
Dex has been developed. The main target of the 
study is to transport proteins or mRNAs associated 
with the tumor-antigen via Dex [69,70]. Although 

Dex has a great potential to generate immune 
responses against tumors, the clinical progression 
of this application is still in its early stages. Applying 
this kind of therapy in large populations is costly 
and needs the monitoring of well-defined quality 
control parameters [71]. Besides Dex, ascites-
derived exosomes (Aex) are possible to be used as 
a cell-free tumor vaccine in the immunotherapy 
of cancer. In phase I clinical study conducted 
in 2008, it was seen that a positive adjuvant in 
the induction of antitumor immune responses 
combined with granulocyte-macrophage colony-
stimulating factor (GM-CSF) of Aex obtained from 
colorectal cancer patients [31]. As a new vaccine 
strategy for cancer immunotherapy, Aex will 
considerably improve the clinical outcomes with 
the exact cellular origin of exosomes and further 
characterization. However, donor cell type and 
sending method are also a crucial issue for cancer 
treatment. We should never forget the fact that 
tumor cells may use exosome secretion as a way 
to survive under stress [72,73]. 

Undoubtedly, since exosomes positively affect 
tumor progression and metastasis the prevention 
of exosomal release is another treatment method. 
In 2010, Kosaka et al., aimed to decrease the 
formation of exosomes using an inhibitor that 
prevents the formation of ceramide [74]. In 
another study Chalmin et al., since exosome 
release has induced by an increase in the amount 
of intracellular Ca+2, it targeted the reduction 
of exosome formation as a result of amiloride 
suppression of Ca+2 channels [75].

 Fig 2. Exosome based cancer therapeutic strategies
(a) remove specific exosomes or prevent exosome production for suppresses tumor progression, (b) use of exosomes as an exogenous 

molecule carrier, and (c) use of exosomes on their own
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Use of exosomes as a molecule carrier
There have been considerable advances in drug 

design and delivery thanks to the development of 
nanotechnology in the 21st century. With these 
developments; there have been designed several 
drug delivery vehicles such as polymeric micelles, 
carbon-based and lipoprotein-based drug carriers, 
liposomes, and dendrimers [6]. Liposomes and 
polymeric nanoparticles are the most preferred 
drug delivery vehicles. However, biocompatibility 
and long-term potential safety of these structures 
remain a concern [81]. In these circumstances, 
exosomes or exosome mimetics [82] appear to be 
a superior choice that overcomes these concerns 
[83]. Especially, their long-circulating half-life, the 
intrinsic ability to target tissues, biocompatibility, 
and minimal or no inherent toxicity issues [84] 
offer the possibility of use for tumor treatment. 
Commonly, short interfering-RNA (siRNA), 
microRNA (miRNA), recombinant proteins, and 
especially anti-cancer drugs can be encapsulated 
for exosome-mediated administration by various 
delivery techniques [85]. In this way, they can 
provide a powerful biological effect on the target 
cells. These encapsulated exosomes then are 
capable of delivering their cargos across the blood-
brain barrier and confer a powerful biological 
effect on target cells [13,14]. In one of the first 
reports, a group in Oxford showed for the first 
time that siRNA-loaded exosomes had therapeutic 
potential by a knockdown of the levels of BACE1 
(a therapeutic target in Alzheimer’s disease) in 
the brain. In the study, exosomes have transferred 

siRNA specifically to neurons, microglia, and 
oligodendrocytes in the brain, resulting in the 
BACE1 gene knockdown [86]. However, exosomes 
can also be chemically or biologically modified 
to yield delivery systems that can improve the 
treatment results of chemotherapeutic drugs, as 
well as decrease drug toxicity. In 2019, Yu et al. 
demonstrated that human fetal lung fibroblast-
originate exosomes loaded with erastin chemo 
drug suppressed MDA-MB-231 cell proliferation 
and migration [87]. In another study, Pascucci et 
al., observed that paclitaxel-loaded mesenchymal 
stromal cells (MSCs) induced cell proliferation 
and tumor growth by 50% in a dose-dependent 
manner [88]. Finally, in a study on Celastrol 
(CEL) demonstrated that exosomes loaded with 
CEL exhibited enhanced anti-tumor efficacy as 
compared to free CEL against lung cancer cell 
xenograft [89].

Advantages and disadvantages of exosome-
mediated cancer treatment

Tumor therapeutic use of exosomes is an 
exciting and quickly evolving field of research, with 
great potential in the healing of cancer patients. 
However, there remain considerable challenges 
to overcome including the co-isolation of the 
potential damage of exosomes, non-exosomal 
impurities, low RNA yield, and low-throughput 
of samples. Considering all these disadvantages, 
as the role of exosomes in cancer progression 
become more apparent, there will be increased 
efforts towards their clinical application too [107].

Table 2. Exosome-mediated cancer vaccine studies  

Cargo Exosome source Cancer type Phase References 

Tumor antigenic peptides Dendritic cell-derived Melanoma I [29] 

Tumor antigenic peptides Dendritic cell-derived Non-small lung cancer I [30] 

Tumor antigenic peptides Ascites-derived  Ovarian cancer - [76] 

- Ascites-derived  Colon cancer I [31] 

Tumor antigenic peptides Renal cancer-derived  Renal cancer in vivo [77] 

Tumor antigenic peptides Dendritic cell-derived Malignant glioma ex vivo [78] 

Chemokine Heat-stressed tumor cells Lung carcinoma - [79] 

Tumor antigenic peptides Dendritic cell-derived Mouse tumor - [80] 

Tumor antigenic peptides IFN-γ-matured dendritic cells pulsed with 
antigenic peptides Advanced lung cancer II [68] 
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Table 3. Exosome-mediated drug delivery system studies in cancer treatment

AMSC: adipose tissue-derived mesenchymal stem cells AGAP2-AS1: AGAP2 antisense RNA-1 HFL-1: human fetal lung fibroblasts 
MCF7/ADM: adriamycin-resistant human breast cancer cells MCF7/WT: adriamycin-sensitive human breast cancer cells TRIM3: 
Tripartite motif-containing protein 3 UCH-L1: ubiquitin carboxy-terminal hydrolase L1 

Table 4. Advantages and disadvantages exosomes in cancer treatment

 
  

Cargo Exosome source Cancer Type Results References 

miR-146b marrow stromal cell primary brain tumor reduced in glioma xenograft growth [90] 

Let-7a 
exosomes with the GE11 
peptide on the surface breast cancer therapeutic target [91] 

Doxorubicin mouse immature dendritic cells positive breast cancer therapeutic target [92] 

Paclitaxel mesenchymal stromal cells CFPAC-1 pancreatic cell line a strong anti-proliferative activity [88] 

miR-122 AMSC hepatocellular carcinoma increased anti-tumor activity in vivo [93] 

miR-134 Hs578T and Hs578Ts(i)8 cells triple-negative breast cancer 
reduces triple-negative breast cancer 

aggression and increases drug sensitivity [94] 

Doxorubicin breast cancer cell breast and ovarian cancer increases the therapeutic index [95] 

Doxorubicin blood murin hepatoma 
enhanced cancer targeting under an 

external magnetic field and suppressed 
tumor growth 

[96] 

Paclitaxel macrophage multiple drug resistance cancer cells therapeutic target [97] 

Celastrol bovine milk lung cancer improves therapeutic potential [89] 

miR-21 tumor-associated macrophages gastric cancer increased cisplatin drug resistance [98] 

UCH-L1 MCF7/ADM MCF7/WT significantly negatively correlated with 
prognosis 

[99] 

miR-126 intestinal-type sinonasal 
adenocarcinomas 

malignant nasal-septum carcinomas inhibited cell growth and the 
tumorigenic potential of cells 

[27] 

miR-27a gastric cancer cancer-associated fibroblasts a potential therapeutic target in the 
treatment 

[100] 

TRIM3  gastric cancer gastric cancer 
suppress gastric cancer growth and 

metastasis in vitro and in vivo [101] 

Paclitaxel pro-inflammatory M1-
macrophage cells 

MDA-MB-231, MCF-7, 4T1, A549, 
HepG2 and Hela cells 

the anti-tumor effects of paclitaxel was 
significantly improved 

[26] 

lncRNA AGAP2-AS1 breast cancers SKBR-3 and BT474 breast cell line 
AGAP2-AS1 promotes trastuzumab 

resistance of breast cancer cells 
[102] 

Erastin HFL-1 triple-negative breast cancer suppressed breast cancer cell 
proliferation and migration [87] 

Advantages Disadvantages 

Low toxicity and immunogenicity [103] Effects on target organs and the therapeutic effect is not yet clear. 

Easily cleared from the lung and passes easily through the blood brain barrier [104,105] High purity exosome isolation is not yet available. 

Binding and expression to tumor cells is higher than liposomes of the same size [106] Caspase-3 carrying of exosomes may prevent cell death by apoptosis and may 
cause tumor cell survival. 

It is easily produced by cells. Clinical use should be reliably characterized. 
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CONCLUSION
As a result, exosomes have important 

biological and morphological properties, making 
it possible to use these nanovesicles in both 
treatment-oriented and diagnostic applications. 
However, some important problems with the use 
of exosomes continue. There are some obstacles 
such as high purity not obtained and the lack of 
a clear therapeutic effect in clinical practice. A 
better understanding of exosome biology will 
help to overcome these problems and develop 
new therapeutic approaches. At the same time, 
with the development of techniques to provide 
more sensitive miRNA detection, the potential 
power of exosomal miRNAs in the diagnosis of 
the disease will be increased and the clinic will 
be used more effectively and widely. In addition, 
the complex structure of exosomes can limit 
their pharmaceutical acceptability.  The various 
components of exosomes may be incorporated 
into liposomes or nanoparticles to enhance 
stability, immunogenicity, targeting delivery, and 
uptake. 
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