Preparation and In vitro release of Isoniazid and Rifampicin loaded nanoparticles

Document Type : Research Paper

Authors

NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, Pushp Vihar Sec-3, MB Road, New Delhi, 110017, India

10.22038/nmj.2024.75490.1832

Abstract

Objective(s): Tuberculosis (TB) is one of the most common infectious diseases in the world and requires novel medications or existing ones should be improved.  Nanotechnology is a modern science that helps to avoid adverse reactions and resistance to drugs. The current regimen for standard therapy calls for routine administration of medications over six months. Since the noncompliance of patients and the emergence of drug-resistant strains, therapies become more challenging. The objective of the current study was to develop Isoniazid-Rifampicin-loaded (INH-RIF-NPs) nanoparticles to improve release properties and drug encapsulation efficiency.
Materials and Methods: Box-Behnken Design (BBD) was used for optimizing the nanoparticles. Eudragit was used in the preparations in varying concentrations (1-2% w/v). The compatibility of the drug and excipients was shown. The existence of the nanoparticles was confirmed by the analytical results of the transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). 
Results: The optimized nanoparticles showed no drug-polymer interaction. The mean size of the INH-RIF-NPs was around 112±8.73 nm, and they were sphere-like, smooth, fairly uniform in size, and well-dispersed, and entrapment efficiencies were high at 98.7±0.68%. Drug release was slow and sustained with 66.91% INH cumulative release and 80.06 of RFP after 24 hr. 
Conclusion: Significant drug uptake with higher encapsulation efficiency, uniform size, good dispersion, and prolonged release characteristics are all present in INH-RIF-NPs. This suggests the existence of a delivery system capable of effectively encapsulating and delivery of combined drug formulation in polymeric nanoparticles.

Keywords


1.    Gupta A, Kulkarni S, Rastogi N, Anupurba S. A study of Mycobacterium tuberculosis genotypic diversity & drug resistance mutations in Varanasi, north India. Indian J Med Res. 2014; 139:892-902.
2.    Raviglione CM, O’Brien RJ. Antimycobacterial agents. In: Harrison’s Principles of Internal Medicine. 2018. 20th ed. Ch. 168. p. 18 Medical. 
3.    Rivoire N, Ravololonandriana P, Rasolonavalona T, Martin A, Portaels F, Ramarokoto H, Rasolofo Razanamparany V. Evaluation of the resazurin assay for the detection of multidrug-resistant Mycobacterium tuberculosis in Madagascar. Int J Tuberc Lung Dis. 2007; 11:683-688. 
4.    Targhotra M, Aggarwal R, and Chauhan MK. Bioactive compounds for effective management of drug-resistant tuberculosis. Curr Bioact Compd. 2020; 16:1-10 
5.    Shishoo CJ, Shah SA, Rathod IS, Savale SS, Vora MJ. Impaired bioavailability of rifampicin in the presence of isoniazid from fixed-dose combination (FDC) formulation. Int J Pharm. 2001; 228:53-67. 
6.    Singh S, Mariappan TT, Shankar R, Sarda N, Singh B. A critical review of the probable reasons for the poor variable bioavailability of rifampicin from anti-tubercular fixed-dose combination (FDC) products, and the likely solutions to the problem. Int J Pharm. 2001; 228(1-2):5-17. 
7.    Mariappan TT, Singh S. Regional gastrointestinal permeability of rifampicin and isoniazid (alone and their combination) in the rat. Int J Tuberc Lung Dis. 2003; 797-803.
8.    du Toit LC, Pillay V, Danckwerts MP. Tuberculosis chemotherapy: current drug delivery approaches. Respir Res. 2006; 7:118. 
9.    Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007; 51:3781–3788. 
10.    Garnham JC, Taylor T, Turner P, Chasseaud LF. Serum concentrations and bioavailability of rifampicin and isoniazid in combination. Br J Clin Pharmacol. 1976; 3:897-902. 
11.    Boman G. Serum concentration and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. Eur J Clin Pharmacol. 1974; 7:217-225. 
12.    Goldman AL, Braman SS. Isoniazid: a review with emphasis on adverse effects. Chest. 1972; 62:71–77. 
13.    Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002; 16:53-61. 
14.    Desjardins M, Griffiths G. Phagocytosis: latex leads the way. Curr Opin Cell Biol. 2003; 15:498-503. 
15.    Pandey R, Khuller GK. Nanotechnology-based drug delivery system(s) for the management of tuberculosis. Indian J Exp Biol. 2006; 44:357-366. 
16.    Griffiths G, Nyström B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol. 2010; 8:827–834.  
17.    Toti US, Guru BR, Hali M, Hali M, McPharlin CM, Wykes SM, Panyam J, Whittum-Hudson JA. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011; 32:6606–6613.   
18.    Zhang L, Pornpattananangku D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010; 17:585–594 
19.    Souto EB, Muller RH. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie. 2006; 61:431–437. 
20.    Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther. 2008; 83:761–769.  
21.    Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006; 24:1211–1217. 
22.    Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006; 2:8–21. 
23.    Hornig S, Heinze T, Becer CR, Schubert US. Synthetic polymeric nanoparticles by nanoprecipitation. J Mater Chem. 2009; 23:3838–3840. 
24.    Yadav KS, Sawant KK. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech. 2010;11(3):1456-1465. 
25.    Sah AK, Suresh PK, Verma VK. PLGA nanoparticles for ocular delivery of loteprednol etabonate: A corneal penetration study. Artif Cells Nanomed Biotechnol. 2017; 45:1–9. 
26.    Warsi MH, Anwar M, Garg V, Jain GK, Talegaonkar S, Ahmad FJ, Khar RK. Dorzolamide-Loaded PLGA/Vitamin E TPGS nanoparticles for glaucoma therapy: pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf B Biointerfaces. 2014; 122:423–431. 
27.    Shaikh MV, Kala M, Nivsarkar M. Formulation and optimization of doxorubicin-loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in-vitro activity. Eur J Pharm Sci. 2017; 100:262-272. 
28.    Abdelghany S, Parumasivam T, Pang A, Roediger B, Tang P, Jahn K, Chan HK, Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J Drug Deliv Sci Technol. 2019; 642–651. 
29.    Dubey N, Varshney R, Shukla J, Ganeshpurkar A, Hazari PP, Bandopadhaya GP, Mishra AK, Trivedi, P. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor-targeted delivery of somatostatin analog. Drug Deliv. 2012;19:132–142. 
30.    Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharm Sci. 2016; 11:404–416 
31.    Tuba ST, Zerrin SB, Ulya B. Preparation of polymeric nanoparticles using different Stabilizing Agents. J Fac Pharm Ankara. 2009; 38:257–268. 
32.    Talluri SV, Kuppusamy G, Karri VV, Yamjala K, Wadhwani A, Madhunapantula SV, Pindiprolu SS. Application of quality-by-design approach to optimize diallyl disulfide-loaded solid lipid nanoparticles. Artif Cells Nanomed Biotechnol. 2017; 45:474-488. 
33.    Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm. 2010; 76:189-199. 
34.    Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: a systematic study of particle size and drug content. Int J Pharm. 2007; 336:367-375. 
35.    Quintanar-Guerrero D, Fessi H, Allémann E, Voelker E. Influence of stabilizing agents and preparative variables on the formation of poly (D, L-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm. 1996; 143:133-141. 
36.    Mainardes RM, Evangelista RC. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm. 2005; 290:137-144. 
37.    Feng SS, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J Control Release. 2001; 71:53-69. 
38.    Görner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E. Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. J Control Release. 1999; 57:259-268.
39.     Khatak S, Khatak M, Ali F, Rathi A, Singh R, Singh G, Dureja H. Development and validation of an RP-HPLC method for simultaneous estimation of antitubercular drugs in solid lipid nanoparticles. Indian J Pharmaceut Sci. 2018; 80:996–1002. 
40.    Gaonkar RH, Ganguly S, Dewanjee S, Sinha S, Gupta A, Ganguly S, Chattopadhyay D, ChatterjeeDebnath M. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization. In vitro and in vivo Studies. Sci Rep. 2017; 7:530–542. 
41.    Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharma Sci. 2016; 11:404–16. 
42.    Singh S, Mariappan T, Sharda N, Singh B. Degradation of rifampicin, isoniazid and pyrazinamide from prepared mixtures and marketed single and combination products under acid conditions. Pharm Pharmacol Commun. 2000; 6:491–494. 
43.    Ge Z, Ma R, Xu G, Chen Z, Zhang D, Wang Q, Hei L, Ma W. Development and in vitro release of isoniazid and rifampicin-loaded bovine serum albumin nanoparticles. Med Sci Monit. 2018;24:473-478. 
44.    Gaspar DP, Faria V, Gonçalves LM, Taboada P, Remuñán-López C, Almeida AJ. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int J Pharm. 2016; 497:199-209. 
45.    Makoni PA, Wa Kasongo K, Walker RB. Short-term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019;11(8):397. 
46.    Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm. 2006;314(1):83-89.