Engineering of magneto liposomes to enhance theranostic biomedical applications

Document Type : Review Paper

Authors

1 Medical Bionanotechnology, Faculty of Allied Health Sciences (FAHS), Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India

2 Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602101, India

3 Department of Chemistry Amity Institute of Applied Sciences (AIAS) Amity University - Kolkata Campus, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.

Abstract

Magnetoliposomes, which are magnetically sensitive lipid nanocarriers, have garnered increasing attention in biomedical research due to their promising potential. Their biocompatibility and ability to transport therapeutic cargos with tailored physicochemical properties make lipid-based carriers, such as liposomes, highly valued in medical applications. In recent years, there have been significant advancements in integrating magnetic nanomaterials into medical technologies, particularly in areas such as magnetic resonance imaging (MRI) and therapeutic techniques like hyperthermic treatment, which targets and eliminates cancerous cells. This article provides an overview of the development of magnetically activated lipid nanocarriers, with a particular focus on magnetoliposomes in the medical field. The review examines the synthesis of magnetic nanoparticles and liposomes, the engineering of magnetoliposomes, and their applications in healthcare. Furthermore, the article examines synthesis techniques in detail, offering insights into the complex interactions between magnetic materials and lipid carriers. The synergistic combination of magnetic elements and lipid nanocarriers is driving a paradigm shift in medicine, offering the potential to revolutionize both diagnostic and therapeutic interventions.

Keywords


  1. Vimaladevi M, Divya KC, Girigoswami A. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. J Photochem Photobiol B. 2016;162:146-152.
  2. Paramita P, Subramaniam VD, Murugesan R, Gopinath M, Ramachandran I, Ramalingam S, et al. Evaluation of potential anti‐cancer activity of cationic liposomal nanoformulated Lycopodium clavatum in colon cancer cells. IET Nanobiotechnol. 2018;12(6):727-732.
  3. Gang W, Jie WJ, Ping ZL, Ming DS, Ying LJ, Lei W, et al. Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opin Drug Deliv. 2012;9(6):599-613.
  4. Wang G, Wang J, Wu W, Tony To SS, Zhao H, Wang J. Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs. Expert Opin Drug Deliv. 2015;12(9):1475-1499.
  5. Kour P, Rath G, Sharma G, Goyal AK. Recent advancement in nanocarriers for oral vaccination. Artif Cells Nanomed Biotechnol. 2018;46(sup3):1102-1114.
  6. Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A. Water–Nanomaterial Interaction to Escalate Twin-Mode Magnetic Resonance Imaging. ACS Biomater Sci Eng. 2020;6(8):4377-4389.
  7. Bhardwaj A, Kumar L, Mehta S, Mehta A. Stimuli-sensitive Systems-an emerging delivery system for drugs. Artif Cells Nanomed Biotechnol. 2015;43(5):299-310.
  8. Rethi L, Rethi L, Liu C-H, Hyun TV, Chen C-H, Chuang E-Y. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine. 2023;18(null):5607-5623.
  9. Amsaveni G, Farook AS, Haribabu V, Murugesan R, Girigoswami A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv Sci Eng Med. 2013;5(12):1340-1348.
  10. Baeza A, Colilla M, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv. 2015;12(2):319-337.
  11. Joniec A, Sek S, Krysinski P. Magnetoliposomes as Potential Carriers of Doxorubicin to Tumours. Chem Eur J. 2016;22(49):17715-17724.
  12. Ferreira M, Sousa J, Pais A, Vitorino C. The Role of Magnetic Nanoparticles in Cancer Nanotheranostics. Materials. 2020; 13(2):266.
  13. Haribabu V, Girigoswami K, Girigoswami A. Magneto-silver core–shell nanohybrids for theragnosis. Nano-Structures & Nano-Objects. 2021;25:100636.
  14. Vedakumari SW, Prabu P, Jancy SJV, Pravin YR, Manickavasagam K, Sastry TP. Radiopaque fibrin nanocomplex as a promising tool for X-ray imaging applications. Int J Biol Macromol. 2022;200:285-292.
  15. O’Connor L, Wang A, Walker SM, Yerram N, Pinto PA, Turkbey B. Use of multiparametric magnetic resonance imaging (mpMRI) in localized prostate cancer. Expert Rev Med Devices. 2020;17(5):435-442.
  16. Gowtham P, Girigoswami K, Pallavi P, Harini K, Gurubharath I, Girigoswami A. Alginate-Derivative Encapsulated Carbon Coated Manganese-Ferrite Nanodots for Multimodal Medical Imaging. Pharmaceutics. 2022;14(12):2550.
  17. Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(6):e1571.
  18. Zuo X, Zhang D, Zhang J, Fang T. Magnetic induction heating and drug release properties of magnetic carbon nanotubes. Int J Hyperthermia. 2023;40(1):2280448.
  19. Carlton H, Weber M, Peters M, Arepally N, Lad YS, Jaswal A, et al. HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia. Int J Hyperthermia. 2023;40(1):2272067.
  20. Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. J Biomater Sci Polym Ed. 2023;34(9):1274-1335.
  21. Lu AH, Salabas EeL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007;46(8):1222-1244.
  22. Sorensen C. Magnetism. Nanoscale Mater in Chemistry. 2001:169-221.
  23. Battle X, Labarta A. Finite-size effects in fine particles: magnetic and transport properties. J Phys D: Appl Phys. 2002;35(6):R15-R42.
  24. Iwaki T, Kakihara Y, Toda T, Abdullah M, Okuyama K. Preparation of high coercivity magnetic FePt nanoparticles by liquid process. J Appl Phys. 2003;94(10):6807-6811.
  25. Pereira N, Mujika M, Arana S, Correia T, Silva A, Gomes HT, et al. The effect of a static magnetic field on the flow of iron oxide magnetic nanoparticles through glass capillaries. Visualization and simulation of complex flows in biomedical engineering: Springer. 2014;181-196.
  26. Hua X, Yang Q, Dong Z, Zhang J, Zhang W, Wang Q, et al. Magnetically triggered drug release from nanoparticles and its applications in anti-tumor treatment. Drug Delivery. 2017;24(1):511-518.
  27. Li X, Yang Y, Jia Y, Pu X, Yang T, Wang Y, et al. Enhanced tumor targeting effects of a novel paclitaxel-loaded polymer: PEG–PCCL-modified magnetic iron oxide nanoparticles. Drug Delivery. 2017;24(1):1284-1294.
  28. Ni Y, Deng P, Yin R, Zhu Z, Ling C, Ma M, et al. Effect and mechanism of paclitaxel loaded on magnetic Fe3O4@mSiO2-NH2-FA nanocomposites to MCF-7 cells. Drug Delivery. 2023;30(1):64-82.
  29. Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. Nanomaterials. 2019; 9(12):1791.
  30. Gowtham P, Haribabu V, Prabhu AD, Pallavi P, Girigoswami K, Girigoswami A. Impact of nanovectors in multimodal medical imaging. Nanomed Journal. 2022;9(2).
  31. Zheng S, Jin S, Jiao M, Wang W, Zhou X, Xu J, et al. Tumor-targeted Gd-doped mesoporous Fe3O4 nanoparticles for T1/T2 MR imaging guided synergistic cancer therapy. Drug Delivery. 2021;28(1):787-799.
  32. Molaei MJ. Gadolinium-doped fluorescent carbon quantum dots as MRI contrast agents and fluorescent probes. Sci Rep. 2022;12(1):17681.
  33. Ratzinger G, Agrawal P, Körner W, Lonkai J, Sanders HMHF, Terreno E, et al. Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents. Biomaterials. 2010;31(33):8716-8723.
  34. Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu D-T, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered. 2020;11(1):328-355.
  35. Ahn YJ, Kong TH, Choi JS, Yun WS, Key J, Seo YJ. Strategies to enhance efficacy of SPION-labeled stem cell homing by magnetic attraction: a systemic review with meta-analysis. Int J Nanomedicine. 2019;14(null):4849-4866.
  36. Haribabu V, Farook AS, Goswami N, Murugesan R, Girigoswami A. Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J Biomed Mater Res B Appl Biomater. 2016;104(4):817-824.
  37. Kusigerski V, Illes E, Blanusa J, Gyergyek S, Boskovic M, Perovic M, et al. Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method. J Magn Magn Mater. 2019;475:470-478.
  38. Hadadian Y, Masoomi H, Dinari A, Ryu C, Hwang S, Kim S, et al. From Low to High Saturation Magnetization in Magnetite Nanoparticles: The Crucial Role of the Molar Ratios Between the Chemicals. ACS Omega. 2022;7(18):15996-16012.
  39. Ramimoghadam D, Bagheri S, Abd Hamid SB. Stable monodisperse nanomagnetic colloidal suspensions: An overview. Colloids Surf B: Biointerfaces. 2015;133:388-411.
  40. Alibeigi S, Vaezi MR. Phase Transformation of Iron Oxide Nanoparticles by Varying the Molar Ratio of Fe2+:Fe3+. Chem Eng Technol. 2008;31(11):1591-1596.
  41. Wu W, Wu Z, Yu T, Jiang C, Kim W-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16(2):023501.
  42. Moniruzzaman M, Tamura M, Tahara Y, Kamiya N, Goto M. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: Characterization and cytotoxicity evaluation. Int J Pharm. 2010;400(1):243-250.
  43. Egito EST, Amaral-Machado L, Alencar EN, Oliveira AG. Microemulsion systems: from the design and architecture to the building of a new delivery system for multiple-route drug delivery. Drug Deliv Transl Res. 2021;11(5):2108-2133.
  44. Jia Z, Misra RDK. Self-assembled magnetic nanostructures. Materials Technology. 2008;23(2):66-80.
  45. El-Dakdouki MH, El-Boubbou K, Xia J, Kavunja H, Huang X. Methods for Magnetic Nanoparticle Synthesis and Functionalization. Chemistry of Bioconjugates 2014; 281-314.
  46. Klíčová Lu, Šebej P, Štacko P, Filippov SK, Bogomolova A, Padilla M, et al. CTAB/Water/Chloroform Reverse Micelles: A Closed or Open Association Model? Langmuir. 2012;28(43):15185-15192.
  47. Gupta M, Das A, Mohapatra S, Das D, Datta A. Surfactant based synthesis and magnetic studies of cobalt ferrite. Appl Phys A. 2020;126(8):1-13.
  48. Rockenberger J. A new non-hydrolic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 1999;121(49):11595-11596.
  49. Effenberger FB, Couto RA, Kiyohara PK, Machado G, Masunaga SH, Jardim RF, et al. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron (III) acetylacetonate. Nanotechnology. 2017;28(11):115603.
  50. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc. 2004;126(1):273-279.
  51. Sun S, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287(5460):1989-1992.
  52. Asghar K, Qasim M, Das D. Preparation and characterization of mesoporous magnetic MnFe2O4@ mSiO2 nanocomposite for drug delivery application. Mater Today: Proc. 2020;26:87-93.
  53. Peddis D, Cannas C, Musinu A, Ardu A, Orrù F, Fiorani D, et al. Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater. 2013;25(10):2005-2013.
  54. Jana NR, Chen Y, Peng X. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem Mater. 2004;16(20):3931-3935.
  55. Ndlwana L, Raleie N, Dimpe KM, Ogutu HF, Oseghe EO, Motsa MM, et al. Sustainable Hydrothermal and Solvothermal Synthesis of Advanced Carbon Materials in Multidimensional Applications: A Review. Materials. 2021; 14(17):5094.
  56. Liu S, Yu B, Wang S, Shen Y, Cong H. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Colloid Interface Sci. 2020;281:102165.
  57. Wang J, Sun J, Sun Q, Chen Q. One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mat Res Bull. 2003;38(7):1113-1118.
  58. Karaagac O, Köçkar H. The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. J Mater Sci: Mater Electro. 2020;31(3):2567-2574.
  59. Affrald R J, M N, Narayan S. A comprehensive review of manganese dioxide nanoparticles and strategy to overcome toxicity. Nanomed J. 2023;10(1):1-15.
  60. Shan J, Wang L, Yu H, Ji J, Amer WA, Chen Y, et al. Recent progress in Fe3O4 based magnetic nanoparticles: from synthesis to application. Mater Sci Technol. 2016;32(6):602-614.
  61. Sheng J, Liu X, Niu C, Sun Y, Chen Y, Wang H, et al. Facile microwave-assisted hydrothermal synthesis of SnSe: impurity removal and enhanced thermoelectric properties. J Mater Chem C. 2020;8(30):10333-10341.
  62. Sreeja V, Joy PA. Microwave–hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mat Res Bull. 2007;42(8):1570-1576.
  63. Alkhayal A, Fathima A, Alhasan AH, Alsharaeh EH. PEG Coated Fe3O4/RGO Nano-Cube-Like Structures for Cancer Therapy via Magnetic Hyperthermia. Nanomaterials. 2021; 11(9):2398.
  64. Ramimoghadam D, Bagheri S, Hamid SBA. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater. 2014;368:207-229.
  65. Wang P, Zhu Y, Yang X, Li C. Electrochemical synthesis of magnetic nanoparticles within mesoporous silica microspheres. Coll Surf A: Physicochem Eng Asp. 2007;294(1):287-291.
  66. Martinez L, Leinen D, Martín F, Gabas M, Ramos-Barrado JR, Quagliata E, et al. Electrochemical Growth of Diverse Iron Oxide (Fe3O4, α-FeOOH , and γ-FeOOH) Thin Films by Electrodeposition Potential Tuning. J Electrochem Soc. 2007;154(3):D126.
  67. Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P. Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim Acta. 2008;53(8):3436-3441.
  68. Hammed A, Voronov A, Pryor S. Scalable and sustainable synthesis of superparamagnetic iron oxide nanoparticles using new tubular electrochemical system. J Appl Electrochem. 2021;51(7):1093-1100.
  69. Mazario E, Sánchez-Marcos J, Menéndez N, Herrasti P, García-Hernández M, Muñoz-Bonilla A. One-pot electrochemical synthesis of polydopamine coated magnetite nanoparticles. RSC Advances. 2014;4(89):48353-48361.
  70. Yu J, Wang B, Lu Q, Xiao L, Ma X, Feng Y, et al. Fabrication of Fe3O4 nanoparticles by using cathode glow discharge electrolysis plasma and its electrochemical properties. Electrochim Acta. 2022;427:140843.
  71. Pawar AA, Kumar R, Sharma S, Satyanarayana T. One-Pot Electrochemical Synthesis of Citric Acid Functionalized Iron Oxide Magnetic Nanoparticles for Congo Red Adsorption. Particle & Particle Systems Characterization. 2022;39(12):2200156.
  72. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154(2):123-140.
  73. Castañeda-Reyes ED, Perea-Flores MdJ, Davila-Ortiz G, Lee Y, Gonzalez de Mejia E. Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review. Int J Nanomed. 2020:7627-7650.
  74. Yoshimoto M, Yamasaki M, Okamoto M, Umakoshi H, Kuboi R. Oligolamellar vesicles for covalent immobilization and stabilization of d-amino acid oxidase. Enzyme Microb Technol. 2013;52(1):13-19.
  75. Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular vesicles: preparation and applications. ChemSystemsChem. 2021;3(2):e2000049.
  76. Chaurasiya A, Gorajiya A, Panchal K, Katke S, Singh AK. A review on multivesicular liposomes for pharmaceutical applications: preparation, characterization, and translational challenges. Drug Deliv Transl Res. 2022:1-19.
  77. Has C, Pan S. Vesicle formation mechanisms: an overview. J Liposome Res. 2021;31(1):90-111.
  78. Briuglia M-L, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5:231-242.
  79. Trenkenschuh E, Friess W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm. 2021;165:345-360.
  80. Liang X, Mao G, Ng KYS. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Coll Int Sci. 2004;278(1):53-62.
  81. Guimarães Sá Correia M, Briuglia ML, Niosi F, Lamprou DA. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release. Int J Pharm. 2017;516(1):91-99.
  82. Shi D, Mi G, Shen Y, Webster TJ. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood–brain barrier. Nanoscale. 2019;11(32):15057-15071.
  83. Zhang W-Y, Du F, He M, Bai L, Gu Y-Y, Yang L-L, et al. Studies of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes-loaded liposomes as drug delivery system. Eur J Med Chem. 2019;178:390-400.
  84. Chen Z-J, Yang S-C, Liu X-L, Gao Y, Dong X, Lai X, et al. Nanobowl-Supported Liposomes Improve Drug Loading and Delivery. Nano Letters. 2020;20(6):4177-4187.
  85. Kou L, Huang H, Lin X, Jiang X, Wang Y, Luo Q, et al. Endocytosis of ATB0,+(SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer. Expert Opini Drug Deliv. 2020;17(3):395-405.
  86. Pavlov RV, Gaynanova GA, Kuznetsova DA, Vasileva LA, Zueva IV, Sapunova AS, et al. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake. Int J Pharm. 2020;587:119640.
  87. Gallez A, Palazzo C, Blacher S, Tskitishvili E, Noël A, Foidart J-M, et al. Liposomes and drug-in-cyclodextrin-in-liposomes formulations encapsulating 17β-estradiol: An innovative drug delivery system that prevents the activation of the membrane-initiated steroid signaling (MISS) of estrogen receptor α. Int J Pharm. 2020;573:118861.
  88. Cai Z, Zhang Y, He Z, Jiang L-P, Zhu J-J. NIR-Triggered Chemo-Photothermal Therapy by Thermosensitive Gold Nanostar@Mesoporous Silica@Liposome-Composited Drug Delivery Systems. ACS Appl Bio Mate. 2020;3(8):5322-5330.
  89. Brummelhuis ISG, Simons M, Lindner LH, Kort S, de Jong S, Hossann M, et al. DPPG2-based thermosensitive liposomes as drug delivery system for effective muscle-invasive bladder cancer treatment in vivo. Int J Hyperthermia. 2021;38(1):1415-1424.
  90. Barone A, Cristiano MC, Cilurzo F, Locatelli M, Iannotta D, Di Marzio L, et al. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Coll Surf B: Biointerfaces. 2020;193:111152.
  91. Li Y, Ji T, Torre M, Shao R, Zheng Y, Wang D, et al. Aromatized liposomes for sustained drug delivery. Nat Commun. 2023;14(1):6659.
  92. Thant Y, Wang Q, Wei C, Liu J, Zhang K, Bao R, et al. TPGS conjugated pro-liposomal nano-drug delivery system potentiate the antioxidant and hepatoprotective activity of Myricetin. J Drug Deliv Sci Technol. 2021;66:102808.
  93. Frampton MB, Blais A, Raczywolski Z, Castle A, Zelisko PM. Exploring the utility of hybrid siloxane-phosphocholine (SiPC) liposomes as drug delivery vehicles. RSC Advances. 2021;11(21):13014-13023.
  94. Zhu Y-X, Jia H-R, Duan Q-Y, Liu X, Yang J, Liu Y, et al. Photosensitizer-Doped and Plasma Membrane-Responsive Liposomes for Nuclear Drug Delivery and Multidrug Resistance Reversal. ACS Appl Mater Interfaces. 2020;12(33):36882-36894.
  95. Zhu K, Xu Y, Zhong R, Li W, Wang H, Wong YS, et al. Hybrid liposome–erythrocyte drug delivery system for tumor therapy with enhanced targeting and blood circulation. Regen Biomater. 2023;10:rbad045.
  96. Kheoane PS, Enslin GM-A, Tarirai C. Formulation and characterization of liposomes containing drug absorption enhancers for optimized anti-HIV and antimalarial drug delivery. J Drug Deliv Sci Technol. 2023;13(5):1358-1371.
  97. Pacheco ARF, Barros AM, Amorim CO, Amaral VS, Coutinho PJG, Rodrigues ARO, et al. Elastic Liposomes Containing Calcium/Magnesium Ferrite Nanoparticles Coupled with Gold Nanorods for Application in Photothermal Therapy. Nanomaterials. 2024;14(8):679.
  98. Rocha JVR, Krause RF, Ribeiro CE, Oliveira NCdA, Ribeiro de Sousa L, Leandro Santos J, Jr., et al. Near Infrared Biomimetic Hybrid Magnetic Nanocarrier for MRI-Guided Thermal Therapy. ACS Appl Mater Interfaces. 2025;17(9):13094-13110.
  99. Govindasamy C, El Newehy AS, Hussein-Al-Ali SH, Arulselvan P, Bharathi M, Parthasarathy S. Investigation of antiproliferative efficacy and apoptosis induction in leukemia cancer cells using irinotecan-loaded liposome-embedded nanofibers constructed from chitosan. Int J Biol Macromol. 2024;270:132284.
  100. Sivagnanam S, Das K, Pan I, Stewart A, Barik A, Maity B, et al. Engineered triphenylphosphonium-based, mitochondrial-targeted liposomal drug delivery system facilitates cancer cell killing actions of chemotherapeutics. RSC Chem Biol. 2024;5(3):236-248.
  101. Mirkasymov AB, Zelepukin IV, Nikitin PI, Nikitin MP, Deyev SM. In vivo blockade of mononuclear phagocyte system with solid nanoparticles: Efficiency and affecting factors. J Control Release. 2021;330:111-118.
  102. Pasarin D, Ghizdareanu A-I, Enascuta CE, Matei CB, Bilbie C, Paraschiv-Palada L, et al. Coating Materials to Increase the Stability of Liposomes. Polymers. 2023; 15(3):782.
  103. Rommasi F, Esfandiari N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale Res Lett. 2021;16(1):95.
  104. Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines. Expert Opin Drug Deliv. 2022;19(7):833-846.
  105. Mitra D, Kang E-T, Neoh KG. Polymer-Based Coatings with Integrated Antifouling and Bactericidal Properties for Targeted Biomedical Applications. ACS Appl Polym Mater. 2021;3(5):2233-2263.
  106. Elhissi A, Gill H, Ahmed W, Taylor K. Vibrating-mesh nebulization of liposomes generated using an ethanol-based proliposome technology. J Liposome Res. 2011;21(2):173-180.
  107. Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res. 2020;30(4):336-365.
  108. Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019;27(7):742-761.
  109. Trucillo P, Campardelli R, Reverchon E. Liposomes: From Bangham to Supercritical Fluids. Processes. 2020; 8(9):1022.
  110. Gouda A, Sakr OS, Nasr M, Sammour O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J Drug Deliv Sci Technol. 2021;61:102174.
  111. Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr Rev Food Sci and Food Saf. 2021;20(2):1280-1306.
  112. Bixner O, Reimhult E. Controlled magnetosomes: Embedding of magnetic nanoparticles into membranes of monodisperse lipid vesicles. J Colloid Interface Sci. 2016;466:62-71.
  113. Shete MB, Patil TS, Deshpande AS, Saraogi G, Vasdev N, Deshpande M, et al. Current trends in theranostic nanomedicines. J Drug Deliv Sci Technol. 2022;71:103280.
  114. Nikolova MP, Kumar EM, Chavali MS. Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics. 2022; 14(10):2195.
  115. Fathy MM, Fahmy HM, Balah AMM, Mohamed FF, Elshemey WM. Magnetic nanoparticles-loaded liposomes as a novel treatment agent for iron deficiency anemia: In vivo study. Life Sci. 2019;234:116787.
  116. German SV, Navolokin NA, Kuznetsova NR, Zuev VV, Inozemtseva OA, Anis’kov AA, et al. Liposomes loaded with hydrophilic magnetite nanoparticles: Preparation and application as contrast agents for magnetic resonance imaging. Colloids Surf B: Biointerfaces. 2015;135:109-115.
  117. Korolev DV, Shulmeyster GA, Istomina MS, Nikiforov AI, Aleksandrov IV, Semenov VG, et al. Indocyanine Green-Containing Magnetic Liposomes for Constant Magnetic Field-Guided Targeted Delivery and Theranostics. Magnetochemistry. 2022; 8(10):127.
  118. Zhao Z, Zhao Y, Chen C, Xie C. GLUT1-mediated magnetic liposomes for targeting bone metastatic breast cancer. Eur J Gynaecol Oncol. 2023;44(1):98-105.
  119. García-Jimeno S, Escribano E, Queralt J, Estelrich J. Magnetoliposomes prepared by reverse-phase followed by sequential extrusion: Characterization and possibilities in the treatment of inflammation. Int J Pharm. 2011;405(1):181-187.
  120. Fortes Brollo ME, Domínguez-Bajo A, Tabero A, Domínguez-Arca V, Gisbert V, Prieto G, et al. Combined Magnetoliposome Formation and Drug Loading in One Step for Efficient Alternating Current-Magnetic Field Remote-Controlled Drug Release. ACS Appl Mater Interfaces. 2020;12(4):4295-4307.
  121. Zheng J, Bai C, Peng H, Zhao L, Xiong H. Thermosensitive magnetoliposome – Novel carrier for targeted delivery and triggered release of coix seed oil. J Magn Magn Mater. 2020;497:166012.
  122. Liau JJ, Hook S, Prestidge CA, Barnes TJ. A lipid based multi-compartmental system: Liposomes-in-double emulsion for oral vaccine delivery. Eur J Pharm Biopharm. 2015;97:15-21.
  123. Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D. Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. J Magn Magn Mater. 2007;311(1):208-215.
  124. Rodrigues ARO, Ramos JMF, Gomes IT, Almeida BG, Araújo JP, Queiroz MJRP, et al. Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs. RSC Adv. 2016;6(21):17302-17313.
  125. Nitica S, Fizesan I, Dudric R, Loghin F, Lucaciu CM, Iacovita C. Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment. Pharmaceutics. 2022; 14(11):2501.
  126. Cheung CCL, Monaco I, Kostevšek N, Franchini MC, Al-Jamal WT. Nanoprecipitation preparation of low temperature-sensitive magnetoliposomes. Colloids Surf B Biointerfaces. 2021;198:111453.
  127. Yu B, Lee RJ, Lee LJ. Microfluidic methods for production of liposomes. Methods in enzymology. 2009;465:129-141.
  128. Torres CE, Cifuentes J, Gómez SC, Quezada V, Giraldo KA, Puentes PR, et al. Microfluidic Synthesis and Purification of Magnetoliposomes for Potential Applications in the Gastrointestinal Delivery of Difficult-to-Transport Drugs. Pharmaceutics. 2022; 14(2):315.
  129. Aranguren A, Torres CE, Muñoz-Camargo C, Osma JF, Cruz JC. Synthesis of Nanoscale Liposomes via Low-Cost Microfluidic Systems. Micromachines. 2020; 11(12):1050.
  130. Rodrigues ARO, Mendes PMF, Silva PML, Machado VA, Almeida BG, Araújo JP, et al. Solid and aqueous magnetoliposomes as nanocarriers for a new potential drug active against breast cancer. Colloids Surf B Biointerfaces. 2017;158:460-468.
  131. Floris A, Ardu A, Musinu A, Piccaluga G, Fadda AM, Sinico C, et al. SPION@liposomes hybrid nanoarchitectures with high density SPION association. Soft Matter. 2011;7(13):6239-6247.
  132. Veloso SRS, Andrade RGD, Castanheira EMS. Magnetoliposomes: recent advances in the field of controlled drug delivery. Expert Opin Drug Deliv. 2021;18(10):1323-1334.
  133. Haša J, Hanuš J, Štěpánek F. Magnetically Controlled Liposome Aggregates for On-Demand Release of Reactive Payloads. ACS Appl Mater Interfaces. 2018;10(24):20306-20314.
  134. Salvatore A, Montis C, Berti D, Baglioni P. Multifunctional Magnetoliposomes for Sequential Controlled Release. ACS Nano. 2016;10(8):7749-7760.
  135. Millart E, Lesieur S, Faivre V. Superparamagnetic lipid-based hybrid nanosystems for drug delivery. Expert Opin Drug Deliv. 2018;15(5):523-540.
  136. Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, et al. Photonic and magnetic materials for on-demand local drug delivery. Adv Drug Deliv Rev. 2022;191:114584.
  137. Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. Nat Rev Methods Primers. 2022;2(1):92.
  138. Nappini S, Bonini M, Ridi F, Baglioni P. Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field. Soft Matter. 2011;7(10):4801-4811.
  139. Nappini S, Bonini M, Bombelli FB, Pineider F, Sangregorio C, Baglioni P, et al. Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability. Soft Matter. 2011;7(3):1025-1037.
  140. Shen S, Huang D, Cao J, Chen Y, Zhang X, Guo S, et al. Magnetic liposomes for light-sensitive drug delivery and combined photothermal–chemotherapy of tumors. J Mater Chem B. 2019;7(7):1096-1106.
  141. Zhang JQ, Zhang ZR, Yang H, Tan QY, Qin SR, Qiu XL. Lyophilized Paclitaxel Magnetoliposomes as a Potential Drug Delivery System for Breast Carcinoma via Parenteral Administration: In Vitro and in Vivo Studies. Pharm Res. 2005;22(4):573-583.
  142. Basoglu H, Bilgin MD, Demir MM. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study. Photodiagnosis Photodyn Ther. 2016;13:81-90.
  143. Oltolina F, Santaella Escolano MD, Jabalera Y, Prat M, Jimenez Lopez C. mAb-Functionalized Biomimetic MamC-Mediated-Magnetoliposomes as Drug Delivery Systems for Cancer Therapy. Int J Mol Sci. 2023; 24(18):13958.
  144. Ansari M, Eslami H, Javadpour S, Yousefi E. Cancer Therapy Using a Targeted Magnetoliposomes Encapsulated Doxorubicin Assisted Ultrasound. Mater Technol. 2022;37(8):858-865.
  145. Askari A, Tajvar S, Nikkhah M, Mohammadi S, Hosseinkhani S. Synthesis, characterization and in vitro toxicity evaluation of doxorubicin-loaded magnetoliposomes on MCF-7 breast cancer cell line. J Drug Deliv Sci Technol. 2020;55:101447.
  146. Ribeiro RFL, Ferreira RV, Pedersoli DC, Paiva PRP, Cunha PdS, Goes AM, et al. Cytotoxic effect of thermosensitive magnetoliposomes loaded with gemcitabine and paclitaxel on human primary breast cancer cells (MGSO-3 line). J Nanopart Res. 2020;22(7):172.
  147. Cardoso BD, Rodrigues ARO, Bañobre-López M, Almeida BG, Amorim CO, Amaral VS, et al. Magnetoliposomes Based on Shape Anisotropic Calcium/Magnesium Ferrite Nanoparticles as Nanocarriers for Doxorubicin. Pharmaceutics. 2021; 13(8):1248.
  148. Pereira DSM, Cardoso BD, Rodrigues ARO, Amorim CO, Amaral VS, Almeida BG, et al. Magnetoliposomes Containing Calcium Ferrite Nanoparticles for Applications in Breast Cancer Therapy. Pharmaceutics. 2019; 11(9):477.
  149. Rio ISR, Rodrigues ARO, Rodrigues CP, Almeida BG, Pires A, Pereira AM, et al. Development of Novel Magnetoliposomes Containing Nickel Ferrite Nanoparticles Covered with Gold for Applications in Thermotherapy. Materials. 2020; 13(4):815.
  150. Lopes FAC, Fernandes AVF, Rodrigues JM, Queiroz M-JRP, Almeida BG, Pires A, et al. Magnetoliposomes Containing Multicore Nanoparticles and a New Antitumor Thienopyridine Compound with Potential Application in Chemo/Thermotherapy. Biomedicines. 2022; 10(7): 1547.
  151. Cardoso BD, Fernandes DEM, Amorim CO, Amaral VS, Coutinho PJG, Rodrigues ARO, et al. Magnetoliposomes with Calcium-Doped Magnesium Ferrites Anchored in the Lipid Surface for Enhanced DOX Release. Nanomaterials. 2023; 13(18):2597.
  152. Pereira M, Rodrigues ARO, Amaral L, Côrte-Real M, Santos-Pereira C, Castanheira EMS. Bovine Lactoferrin-Loaded Plasmonic Magnetoliposomes for Antifungal Therapeutic Applications. Pharmaceutics. 2023; 15(8):2162.
  153. Cintra ER, Hayasaki TG, Sousa-Junior AA, Silva ACG, Valadares MC, Bakuzis AF, et al. Folate-Targeted PEGylated Magnetoliposomes for Hyperthermia-Mediated Controlled Release of Doxorubicin. Front Pharmacol. 2022;13:854430.
  154. Cardoso BD, Rio ISR, Rodrigues ARO, Fernandes FCT, Almeida BG, Pires A, et al. Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin. R Soc Open Sci. 2018;5(10):181017.
  155. Kostevšek N, Cheung CCL, Serša I, Kreft ME, Monaco I, Comes Franchini M, et al. Magneto-Liposomes as MRI Contrast Agents: A Systematic Study of Different Liposomal Formulations. Nanomaterials. 2020; 10(5):889.
  156. Marie H, Lemaire L, Franconi F, Lajnef S, Frapart YM, Nicolas V, et al. Superparamagnetic liposomes for MRI monitoring and external magnetic field‐induced selective targeting of malignant brain tumors. Adv Funct Mater. 2015;25(8):1258-1269.
  157. Béalle G, Di Corato R, Kolosnjaj-Tabi J, Dupuis V, Clément O, Gazeau F, et al. Ultra Magnetic Liposomes for MR Imaging, Targeting, and Hyperthermia. Langmuir. 2012;28(32):11834-11842.
  158. Martínez-González R, Estelrich J, Busquets MA. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI. Int J Mol Sci. 2016; 17(8):1209.
  159. Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, et al. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics. 2018;8(9):2521-2548.
  160. Huang J, Zhong X, Wang L, Yang L, Mao H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics. 2012;2(1):86-102.
  161. Bulte JW, Ma LD, Magin RL, Kamman RL, Hulstaert CE, Go KG, et al. Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran‐magnetite particles. Magn Reson Med. 1993;29(1):32-37.
  162. Grippin AJ, Wummer B, Wildes T, Dyson K, Trivedi V, Yang C, et al. Dendritic Cell-Activating Magnetic Nanoparticles Enable Early Prediction of Antitumor Response with Magnetic Resonance Imaging. ACS Nano. 2019;13(12):13884-13898.
  163. Song X, Yan G, Quan S, Jin E, Quan J, Jin G. MRI-visible liposome–polyethylenimine complexes for DNA delivery: preparation and evaluation. Biosci Biotechnol Biochem. 2019;83(4):622-632.
  164. Sun J, Zhou Y, Jin G, Jin Y, Quan J. Preparation and Preliminary Evaluation of Dual-functional Nanoparticles for MRI and siRNA Delivery. Iran J Pharm Res: IJPR. 2021;20(4):265.
  165. Rost NCV, Sen K, Savliwala S, Singh I, Liu S, Unni M, et al. Magnetic particle imaging performance of liposomes encapsulating iron oxide nanoparticles. J Magn Magn Mater. 2020;504:166675.
  166. Díez‐Villares S, Ramos‐Docampo MA, da Silva‐Candal A, Hervella P, Vázquez‐Ríos AJ, Dávila‐Ibáñez AB, et al. Manganese Ferrite nanoparticles encapsulated into vitamin E/Sphingomyelin nanoemulsions as contrast agents for high‐sensitive magnetic resonance imaging. Adv Healthc Mater. 2021;10(21):2101019.
  167. Rio ISR, Rodrigues ARO, Rodrigues JM, Queiroz M-JRP, Calhelha RC, Ferreira ICFR, et al. Magnetoliposomes Based on Magnetic/Plasmonic Nanoparticles Loaded with Tricyclic Lactones for Combined Cancer Therapy. Pharmaceutics. 2021; 13(11):1905.
  168. Meier S, Pütz G, Massing U, Hagemeyer CE, von Elverfeldt D, Meißner M, et al. Immuno-magnetoliposomes targeting activated platelets as a potentially human-compatible MRI contrast agent for targeting atherothrombosis. Biomaterials. 2015;53:137-148.
  169. Khaleghi S, Rahbarizadeh F, Ahmadvand D, Malek M, Madaah Hosseini HR. The effect of superparamagnetic iron oxide nanoparticles surface engineering on relaxivity of magnetoliposome. Contrast Media Mol Imaging. 2016;11(5):340-349.
  170. Faria MR, Cruz MM, Gonçalves MC, Carvalho A, Feio G, Martins MBF. Synthesis and characterization of magnetoliposomes for MRI contrast enhancement. Int J Pharm. 2013;446(1):183-190.
  171. Lorenzato C, Cernicanu A, Meyre ME, Germain M, Pottier A, Levy L, et al. MRI contrast variation of thermosensitive magnetoliposomes triggered by focused ultrasound: a tool for image‐guided local drug delivery. Contrast Media Mol Imaging. 2013;8(2):185-192.
  172. De Cuyper M, Soenen SJH, Coenegrachts K, Beek LT. Surface functionalization of magnetoliposomes in view of improving iron oxide-based magnetic resonance imaging contrast agents: Anchoring of gadolinium ions to a lipophilic chelate. Anal Biochem. 2007;367(2):266-273.
  173. Gowtham P, Harini K, Thirumalai A, Pallavi P, Girigoswami K, Girigoswami A. Synthetic routes to theranostic applications of carbon-based quantum dots. ADMET and DMPK. 2023;11(4):457–485.
  174. Janani G, Girigoswami A, Girigoswami K. Supremacy of nanoparticles in the therapy of chronic myelogenous leukemia. ADMET DMPK. 2023;11(4):499-511.
  175. Pallavi P, Harini K, Elboughdiri N, Gowtham P, Girigoswami K, Girigoswami A. Infections associated with SARS-CoV-2 exploited via nanoformulated photodynamic therapy. ADMET and DMPK. 2023;11(4);513-531.
  176. Wang X, Wang Y, Xue Z, Wan W, Li Y, Qin H, et al. Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment. J Colloid Interface Sci. 2023;636:388-400.
  177. G P, Gupta S, Dhayalan A, Lahiri BB, Philip J, Kannan S. Green synthesis of quercetin-loaded magneto-liposomes and their assessment of antioxidant efficacy, hyperthermia and MRI contrast features. Mater Chem Phys. 2024;323:129663.
  178. Rocha JVR, Krause RF, Ribeiro CE, Oliveira NCdA, Ribeiro de Sousa L, Leandro Santos J, Jr., et al. Near Infrared Biomimetic Hybrid Magnetic Nanocarrier for MRI-Guided Thermal Therapy. ACS Appl Mater Interfaces. 2024; 17, 9, 13094–13110.
  179. Alwattar JK, Mneimneh AT, Abla KK, Mehanna MM, Allam AN. Smart Stimuli-Responsive Liposomal Nanohybrid Systems: A Critical Review of Theranostic Behavior in Cancer. Pharmaceutics. 2021; 13(3):355.
  180. Veloso SRS, Vázquez-González M, Spuch C, Freiría-Martínez L, Comís-Tuche M, Iglesias-Martínez-Almeida M, et al. An Injectable Composite Co-Assembled Dehydropeptide-Based Magnetic/Plasmonic Lipogel for Multimodal Cancer Therapy. Adv Funct Mater. 2024;n/a(n/a):2402926.
  181. Elbeltagi S, Alfassam HE, Saeedi AM, Eldin ZE, Ibrahim EMM, Abdel shakor Ab, et al. A novel quercetin-loaded NiFe2O4@Liposomes hybrid biocompatible as a potential chemotherapy/hyperthermia agent and cytotoxic effects on breast cancer cells. J Drug Deliv Sci Technol. 2024;91:105203.
  182. Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev. 2021;50(20):11614-11667.
  183. Obaidat IM, Narayanaswamy V, Alaabed S, Sambasivam S, Muralee Gopi CVV. Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. Magnetochemistry. 2019; 5(4):67.
  184. Chauhan A, Anjaly K, Saini A, Kumar R, Kuanr BK, Sharma D. Vitamin k3-Loaded Magnetic Nanoparticle-Mediated Synergistic Magnetothermodynamic Therapy Evokes Massive ROS and Immune Modulation for Augmented Antitumor Potential. ACS Appl Mater Interfaces. 2023;15(23):27515-27532.
  185. Akhtar N, Wu P-W, Chen CL, Chang W-Y, Liu R-S, Wu CT, et al. Radiolabeled human protein-functionalized upconversion nanoparticles for multimodal cancer imaging. ACS Appl Nano Mater. 2022;5(5):7051-7062.
  186. Sharmiladevi P, Akhtar N, Haribabu V, Girigoswami K, Chattopadhyay S, Girigoswami A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl Bio Mater. 2019;2(4):1634-1642.
  187. Leggio L, Arrabito G, Ferrara V, Vivarelli S, Paternò G, Marchetti B, et al. Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Adv Healthc Mater. 2020;9(18):2000731.
  188. Abd Elrahman AA, Mansour FR. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J Drug Deliv Sci Technol. 2019;52:702-712.
  189. Theodosiou M, Sakellis E, Boukos N, Kusigerski V, Kalska-Szostko B, Efthimiadou E. Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma. Sci Rep. 2022;12(1):8697.
  190. Guo H, Chen W, Sun X, Liu Y-N, Li J, Wang J. Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr Polym. 2015;118:209-217.