Antibacterial and anti-biofilm effects of microwave-assisted biologically synthesized zinc nanoparticles

Document Type: Research Paper


1 Department of Pharmaceutical Biotechnology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran

2 Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran

3 Student Research Committee, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran

4 Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

5 Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

6 Department of Medicinal Chemistry, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran


Objective(s): The present study aimed to investigate the antibacterial and anti-biofilm potential of the non-oxidized form of zinc nanoparticles (Zn NPs) prepared by a ‘green approach’ using the Lavandula vera extract with microwave irradiation.
Materials and Methods: After synthesis of Zn NPs, the microdilution and disk diffusion methods was applied for antimicrobial evaluation followed by anti-biofilm activity measurement using crystal violet colorimetric assay procedure.
Results: The obtained results demonstrated the production of spherical Zn NPs within the size range of 30-80 nanometers. The measured minimum inhibitory concentration of the Zn NPs and ZnSO4 against the biofilm-producing and clinically isolated pathogens of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis was estimated to be more than 2560 µg/ml. In addition, a non-significant increase (P>0.05) was observed in the antibacterial activity against methicillin-resistant S. aureus after the addition of the Zn NPs (500 µg/disk) to the antibiotic discs containing tobramycin, erythromycin, tetracycline, azithromycin, and kanamycin compared to ZnSO4. On the other hand, the Zn NPs significantly decreased the biofilm formation of P. mirabilis compared to P. aeruginosa (P<0.05). Biofilm formation by S. aureus also reduced to 68.3±2.1% in the presence of the Zn NPs (640 µg/ml), which was considered significant compared to P. mirabilis and P. aeruginosa at the same concentration (P<0.05).
Conclusion: To sum up, the biofilm inhibitory activity of Zn NPs at higher concentrations than 160 µg/ml against S. aureus and P. mirabilis was more significant compared to the inhibitory effects of ZnSO4. However, further investigations are required in order to determine the antibacterial and anti-biofilm mechanism of Zn NPs.


1. Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 2001; 33(8): 1387–1392.
2. Al-Shabib NA, Husain FM, Hassan I, Khan MS, Ahmed F, Qais FA, Oves M, Rahman M, Khan RA, Khan A, Hussain A, Alhazza IM, Aman A, Noor S, Ebaid H, Al-Tamimi J, Khan JM, Al-Ghadeer ARM, Khan MKA, Ahmad I. Biofabrication of zinc oxide nanoparticle from Ochradenus baccatus leaves: broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies. J Nanomater. 2018; 2018: 1–14.
3. Souli M, Galani I, Plachouras D, Panagea T, Armaganidis A, Petrikkos G, Giamarellou H. Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J Antimicrob Chemother. 2013; 68(4): 852–857.
4. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Microbiol. 2004; 2(2): 95–108.
5. Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013; 60(4): 523–530.
6. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15(2): 167–193.
7. Fratamico PM, Annous BA, Gunther NW. Biofilms in the food and beverage industries. Woodhead Publishing; 2009. p. 99-128.
8. Sofos JN, Geornaras I. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci. 2010; 86(1): 2–14.
9. Rajkowski KT. Biofilms in fish processing. In: Biofilms in the Food and Beverage Industries. Elsevier; 2009 . p. 499–516.
10. Srey S, Jahid IK, Ha SD. Biofilm formation in food industries: A food safety concern. Food Control. 2013; 31(2): 572–585.
11. LewisOscar F, MubarakAli D, Nithya C, Priyanka R, Gopinath V, Alharbi NS, Thajuddin N. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling. 2015; 31(4): 379–391.
12. Charrier C, Salisbury AM, Savage VJ, Duffy T, Moyo E, Chaffer-Malam N, Ooi N, Newman R, Cheung J, Metzger R, McGarry D, Pichowicz M, Sigerson R, Cooper IR, Nelson G, Butler HS, Craighead M, Ratcliffe AJ, Best SA, Stokes NR. Novel bacterial topoisomerase inhibitors with potent broad-spectrum activity against drug-resistant bacteria. Antimicrob Agents Chemother. 2017; 61(5): 2100–2116.
13. Moshafi MH, Forootanfar H, Ameri A, Ameri A, Shakibaie M, Dehghan-Noudeh G, Razavi M. Antimicrobial activity of Bacillus sp. strain FAS1 isolated from soil. Pak J Pharm Sci. 2011; 24(3): 269–275.
14. Lemire JA, Harrison JJ, Turner JR. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013; 11(6): 371–384.
15. Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012; 30(10): 499–511.
16. RM Sterritt, Lester JN. Interactions of heavy metals with bacteria. Sci Total Environ. 1980; 14(1): 5–17.
17. Kathiresan k, Manivannan S, Nabeel MA, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces. 2009; 71(1): 133–137.
18. Soflaei S, Dalimi A, Ghaffarifar F, Shakibaie M, Shahverdi AR, Shafiepour M. In vitro antiparasitic and apoptotic effects of antimony sulfide nanoparticles on Leishmania infantum. J Parasitol Res. 2012; 2012: 1–7.
19. Shakibaie M, Salari Mohazab N, Ayatollahi Mousavi SA. Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans. Jundishapur J Microbiol. 2015; 8(9) e26381.
20. Ma l, Terwilliger A, Maresso AW. Iron and zinc exploitation during bacterial pathogenesis. Metallomics. 2015; 7(12): 1541–1554.
21. Velasco e, Wang S, Sanet M, Fernández-Vázquez j, Jové d, Glaría E, Valledor AF, O’Halloran TV, Balsalobre C. A new role for zinc limitation in bacterial pathogenicity: modulation of α-hemolysin from uropathogenic Escherichia coli. Sci Rep. 2018; 8: 6535.
22. Rauf MA, Owais M, Rajpoot R, Ahmad F, Khan N, Zubair S. Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals. RSC Adv. 2017; 7(58): 36361–36373.
23. Vaseeharan B, Sivakamavalli J, Thaya R. Synthesis and characterization of chitosan-ZnO composite and its antibiofilm activity against aquatic bacteria. J Compos Mater. 2015; 49(2): 177–184.
24. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One. 2014; 9(11): e111289.
25. Ghasemi F, Jalal R. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J Glob Antimicrob Resist. 2016; 6: 118–122.
26. Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 2015; 29: 235–241.
27. Salari Z, Ameri A, Forootanfar H, Adeli-Sardou M, Jafari M, Mehrabani M, Shakibaie M. Microwave-assisted biosynthesis of zinc nanoparticles and their cytotoxic and antioxidant activity. J Trace Elem Med Biol. 2017; 39: 116–123.
28. Pitz AM, Park GW, Lee D, Boissy YL, Vinjé J. Antimicrobial activity of bismuth subsalicylate on Clostridium difficile, Escherichia coli O157:H7, norovirus, and other common enteric pathogens. Gut Microbes. 2015; 6(2): 93–100.
29. Stafford S, Serrano Garcia R, Gun’ko Y. Multimodal magnetic-plasmonic nanoparticles for biomedical applications. Appl Sci. 2018; 8(1): 97.
30. Pardakhty A, Shakibaie M, Daneshvar H, Khamesipour A, Mohammadi-Khorsand T, Forootanfar H. Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. J Microencapsul. 2012; 29(3): 219–224.
31. Shakibaie M, Adeli-Sardou M, Mohammadi-khorsand T, ZeydabadNejad M, Amirfazli E, Amirpour-Rostami S, Ameri A, Forootanfar H. Antimicrobial and antioxidant activity of the biologically synthesized tellurium nanorods; a preliminary in vitro study. Iran J Biotechnol. 2017; 15(4): 268–276.
32. Forootanfar H, Amirpour-Rostami S, Jafari M, Forootanfar A, Yousefizadeh Z, Shakibaie M. Microbial-assisted synthesis and evaluation the cytotoxic effect of tellurium nanorods. Mater Sci Eng C. 2015; 49: 183–189.
33. Nazari p, Dowlatabadi-Bazaz R, Mofid MR, Pourmand MR, Daryani NE, Faramarzi MA, Sepehrizadeh Z, Shahverdi AR. The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori. Appl Biochem Biotechnol. 2014; 172(2): 570–579.
34. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015; 7(3): 219–242.
35. He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011; 166(3): 207–215.
36. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med. 2007; 3(2): 168–171.
37. Fluhr JW, Bösch B, Gloor M, Höffler U. In-vitro and in-vivo efficacy of zinc acetate against propionibacteria alone and in combination with erythromycin. Zentralbl Bakteriol 1999; 289(4): 445–456.
38. Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res Part B Appl Biomater. 2010; 93(2): 557–561.
39. Thati V, Roy ASR, Prasad MVNA, Shivannavar CT, Gaddad SM. Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus. J Biosci Tech. 2010; 1: 64–69.
40. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001; 9(1): 34–39.
41. Ansari MA, Khan HM, Khan AA, Cameotra SS, Pal R. Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum β-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Appl Nanosci. 2014; 4(7): 859–868.
42. Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomedicine. 2012; 7: 2109–2113.
43. Lechevallier MW, Cawthon CD, Lee RG. Inactivation of biofilm bacteria. Appl Environ Microbiol. 1988: 54(10): 2492–2499.
44. Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res Part B Appl Biomater. 2010; 94(1): 22–31.
45. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. J. Reidl, and S. Schild. Int J Med Microbiol. 2015; 305(1): 85–95.