Gold nanoparticles as cancer theranostic agents

Document Type: Review Paper


1 Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran


The application of nanotechnology in medicine involves using nanomaterials to develop novel therapeutic and diagnostic modalities. Given the unique physiochemical and optical properties of gold nanoparticle (GNP) such as good biocompatibility, nontoxic nature, surface properties and comparative stability, it has been widely studied in medicine, especially as a cancer theranostic agent.
This review focuses on recent progresses in the field of gold nanostructures in cancer treatment and diagnosis. As far as cancer detection is concerned, several studies have indicated that GNPs can be used for X-ray, MR and optical imaging. With regard to cancer treatment, most studies have investigated the effect of GNPs in different treatment modalities like photothermal therapy, photodynamic therapy, sonodynamic therapy, drug delivery, and radiotherapy.
In this paper, we have focused on reviewing the role of GNPs in improving radiotherapy efficiency as radiosensitizers. For optimization of parameters influencing the radiosensitization of GNPs, several studies have been undertaken in different scientific routes. We categorize these studies into three categories; Monte Carlo simulation, cellular studies and animal studies. Finally, according to findings reported by different researchers, the physical and biological mechanism of GNPs in generating radiosensitizing effect is discussed.


1.Sezgin E, Karatas O, Çam D, Sur İ, Sayin İ, Avci E. Interaction of gold nanoparticles with living cells. Sigma. 2008; 26: 227-246.
2.Jain S, Hirst D, O’sullivan J. Gold nanoparticles as novel agents for cancer therapy. Brit J Radiol. 2012; 85(1010): 101-113.
3.Mansoori GA, Brandenburg KS, Shakeri-Zadeh A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers. 2010; 2(4): 1911-1928.
4.Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2007;2(5):681-693.
5.Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008; 1: 17.
6.Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol. 2010; 30(3): 212-217.
7.Grace M, Jeyshankar R. Nanotechnology in Medicine: A Scientometric analysis. Indian J Sci. 2015; 21(74): 479-485.
8.Wagner V, Dullaart A, Bock A-K, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006; 24(10): 1211.
9.Su X-Y, Liu P-D, Wu H, Gu N. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med. 2014; 11(2): 86.
10.Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012; 2012.
11.Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater. 2009; 19(10): 1553-1566.
12.Wang C, Li X, Wang Y, Liu Z, Fu L, Hu L. Enhancement of radiation effect and increase of apoptosis in lung cancer cells by thio-glucose-bound gold nanoparticles at megavoltage radiation energies. J Nanopart Res. 2013; 15(5): 1642.
13.Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C. Enhancement of radiation effect by heavy elements. Mutat Res. 2010; 704(1-3): 123-131.
14.Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010; 15(4): 360-371.
15.McMahon SJ, Paganetti H, Prise KM. Optimising element choice for nanoparticle radiosensitisers. Nanoscale. 2016; 8(1): 581-589.
16.Marcazzan S, Varoni EM, Blanco E, Lodi G, Ferrari M. Nanomedicine, an emerging therapeutic strategy for oral cancer therapy. Oral Oncol. 2018; 76: 1-7.
17.Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C,  Davidson R, Geso M. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine. 2009; 5(2): 136-142.
18.Zhang X-D, Guo M-L, Wu H-Y, Sun Y-M, Ding Y-Q, Feng X, Zhang LA. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomedicine. 2009; 4: 165.
19.Butterworth K, Coulter J, Jain S, Forker J, McMahon S, Schettino G,  Prise KM, Currell FJ, Hirst DG. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology. 2010; 21(29): 295101.
20.Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011; 28(2): 237-259.
21.Janát-Amsbury M, Ray A, Peterson C, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm. 2011; 77(3): 417-423.
22.Rai M, Duran N. Metal nanoparticles in microbiology: Springer Science & Business Media; 2011.
23.Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010; 55(11): 3045.
24.Abdelhalim MAK, Mady MM, Ghannam MM. Physical properties of different gold nanoparticles: ultraviolet-visible and fluorescence measurements. J Nanomed Nanotechol. 2012; 3(3): 178-194.
25.Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Del. 2012; 9(10): 1225-1243.
26.Schmid G. Physical and chemical consequences of size-reduction of gold: bioresponse and biodistribution. J Clust Sci. 2014; 25(1): 29-49.
27.Sazgarnia A, Shanei A, Meibodi NT, Eshghi H, Nassirli H. A novel nanosonosensitizer for sonodynamic therapy: in vivo study on a colon tumor model. J Ultrasound Med. 2011; 30(10): 1321-1329.
28.Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008; 60(8): 977-985.
29.Trono JD, Mizuno K, Yusa N, Matsukawa T, Yokoyama K, Uesaka M. Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to X-ray drug delivery system. J Radiat Res. 2011; 52(1): 103-109.
30.Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q,  Chen J, Kong B. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 2011; 22(28): 285101.
31.Hainfeld J, Slatkin D, Focella T, Smilowitz H. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006; 79(939): 248-253.
32.Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine. 2011; 6: 2859.
33.Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE,  Kopelman R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008; 8(12): 4593-4596.
34.Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett. 2007; 7(6): 1591-1597.
35.Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano today. 2007; 2(1): 18-29.
36.Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv Drug Deliv Rev. 2017; 109: 84-101.
37.Bagheri S, Yasemi M, Safaie-Qamsari E, Rashidiani J, Abkar M, Hassani M,  Mirhosseini SA, Kooshki H. Using gold nanoparticles in diagnosis and treatment of melanoma cancer. Artif Cells Nanomed Biotechnol. 2018: 1-10.
38.Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018; 19(7): 1979.
39.Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007; 129(24): 7661-7665.
40.Beik J, Jafariyan M, Montazerabadi A, Ghadimi-Daresajini A, Tarighi P, Mahmoudabadi A, Ghaznavi h, Shakeri-Zhadeh A. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement. Artif Cells Nanomed Biotechnol. 2018; 46(8): 1993-2001.
41.Khademi S, Sarkar S, Shakeri-Zadeh A, Attaran N, Kharrazi S, Ay MR, Ghadiri H. Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells. Mat Sci Eng: C. 2018 ;89: 182-193.
42.Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology. 2011; 22(15): 155101.
43.Alric C, Taleb J, Duc GL, Mandon C, Billotey C, Meur-Herland AL,  Brochard T, Vocanson F, Janier M, Perriat P, Roux S, Tillement O. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc. 2008; 130(18): 5908-5915.
44.Ravanshad R, Karimi Zadeh A, Amani AM, Mousavi SM, Hashemi SA, Savar Dashtaki A, Mirzaei E, Zare B. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Rev. 2018; 9(1): 1373551.
45.Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005; 5(4): 709-711.
46.Bickford L, Sun J, Fu K, Lewinski N, Nammalvar V, Chang J, Drezek R. Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnology. 2008; 19(31): 315102.
47.Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007; 7(7): 1929-1934.
48.Bao C, Beziere N, del Pino P, Pelaz B, Estrada G, Tian F, Ntziachristos V, de la Fuente JM, Cui D. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small. 2013; 9(1): 68-74.
49.Homan K, Mallidi S, Cooley E, Emelianov S. Combined photoacoustic and ultrasound imaging of metal nanoparticles in vivo. Nanoimaging. 2010; 3.
50.Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006; 77(4): 041101.
51.Lu W, Huang Q, Ku G, Wen X, Zhou M, Guzatov D, Brecht P, Su R, Oraevsky A, Wang LV, Li C. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials. 2010; 31(9): 2617-2626.
52.Emelianov SY, Li P-C, O’Donnell M. Photoacoustics for molecular imaging and therapy. Phys today. 2009; 62(8): 34.
53.Oraevsky AA. Gold and silver nanoparticles as contrast agents for optoacoustic tomography. Photoacoustic imaging and spectroscopy: CRC Press; 2009. p. 373-386.
54.Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007; 7(7): 1914-1918.
55.Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP, Stoica G, Wang L . Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 2004; 4(9): 1689-1692.
56.De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008; 29(12): 1912-1919.
57.Eshghi H, Sazgarnia A, Rahimizadeh M, Attaran N, Bakavoli M, Soudmand S. Protoporphyrin IX–gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy. Photodiagnosis Photodyn Ther. 2013; 10(3): 304-312.
58.Alam F, Naim M, Aziz M, Yadav N. Unique roles of nanotechnology in medicine and cancer. Indian J Cancer. 2014; 51(4): 506.
59.Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH,  Chen DH, Wang CR, Shiau AL, Wu CL. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007; 4(5): 713-722.
60.Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA. Tamoxifen− poly (ethylene glycol)− thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem. 2009; 20(12): 2247-2253.
61.Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc. 2007; 129(37): 11653-11661.
62.Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum (IV) warheads. J Am Chem Soc. 2009; 131(41): 14652-14653.
63.Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B,  Flint DJ, Plumb JA, Graham D, Wheate NJ. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010; 132(13): 4678-4684.
64.Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc. 2008; 130(32): 10643-10647.
65.Sobhani N, Sazgarnia A, Rajabi O, Soudmand S, Naghavi N. A study on the photobleaching effect of 5-ALA conjugated gold nanoparticles in a CT26 tumor model during photodynamic therapy. J Med Phys. 2012; 9(3): 217-224.
66.Xia F, Hou W, Zhang C, Zhi X, Cheng J, de la Fuente JM, Song J, Cui D. pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. Acta Biomater. 2018; 68: 308-319.
67.Yang Y, Hu Y, Du H, Ren L, Wang H. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Int J Nanomedicine. 2018; 13: 2065.
68.Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR. An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis Photodyn Ther. 2013; 10(4): 382-388.
69.Choi J, Yang J, Bang D, Park J, Suh JS, Huh YM, Haam S. Targetable gold nanorods for epithelial cancer therapy guided by near‐IR absorption imaging. Small. 2012; 8(5): 746-753.
70.El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006; 239(1): 129-135.
71.Curry T, Kopelman R, Shilo M, Popovtzer R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol I. 2014; 9(1): 53-61.
72.Hirsch LR, Stafford RJ, Bankson J, Sershen SR, Rivera B, Price R,  Hazle JD, Halas NJ, West JL. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA. 2003; 100(23): 13549-13554.
73.Ghahremani FH, Sazgarnia A, Bahreyni-Toosi MH, Rajabi O, Aledavood A. Efficacy of microwave hyperthermia and chemotherapy in the presence of gold nanoparticles: an in vitro study on osteosarcoma. Int J Hyperthermia. 2011; 27(6): 625-636.
74.Mehdizadeh A, Pandesh S, Shakeri-Zadeh A, Kamrava SK, Habib-Agahi M, Farhadi M,  Pishghadam M, Ahmadi A, Arami S, Fedutik Y. The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci. 2014; 29(3): 939-948.
75.Salem DS, Sliem MA, El-Sesy M, Shouman SA, Badr Y. Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. J Photochem Photobiol B. 2018; 182: 92-99.
76.Kuroki M, Hachimine K, Abe H, Shibaguchi H, Kuroki M, Maekawa S,  Yanagisawa J, Kinugasa T, Tanaka T, Yamashita Y. Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Res. 2007; 27(6A): 3673-3677.
77.Jin Zh, Miyoshi N, Ishiguro K, Umemura Si, Kawabata Ki, Yumita N, Sakata I, Takaoka K, Udagawa T, Nakajima S, Tajiri H, Ueda K, Fukuda M, Kumakiri M. Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice. J Dermatol. 2000; 27(5): 294-306.
78.Hodnett M, Zeqiri B, editors. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power. J Phys: Conference Series; 2004: IOP Publishing.
79.Lejbkowicz F, Salzberg S. Distinct sensitivity of normal and malignant cells to ultrasound in vitro. Environ Health Perspect. 1997;105(Suppl 6):1575.
80.Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature. 2003; 423(6936): 153.
81.Sazgarnia A, Shanei A, Taheri AR, Meibodi NT, Eshghi H, Attaran N, shanei MM. Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model. J Ultrasound Med. 2013; 32(3): 475-483.
82.Sazgarnia A, Shanei A. Evaluation of acoustic cavitation in terephthalic acid solutions containing gold nanoparticles by the spectrofluorometry method. Int J Photoenergy. 2012; 2012.
83.Brun E, Sanche L, Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloid Surface B. 2009; 72(1): 128-134.
84.Li X, Zhou H, Yang L, Du G, Pai-Panandiker AS, Huang X, Yan B. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials. 2011; 32(10): 2540-2545.
85.Rostami A, Soleymanifard S. Toxicity and Attenuation of Gold Nanoparticles as a cancer theranostic agent. Adv Nanobiotechnol. 2018; 1(1): 9-15.
86.McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT,  Schettino G, Dickson GR, Hounsell AR, O’Sullivan JM, Prise KM, Hirst DG, Currell FJ. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep UK. 2011; 1: 18.
87.Chow JC, Leung MK, Fahey S, Chithrani DB, Jaffray DA, editors. Monte Carlo simulation on low-energy electrons from gold nanoparticle in radiotherapy. J Phys: Conference series; 2012: IOP Publishing.
88.Lechtman E, Chattopadhyay N, Cai Z, Mashouf S, Reilly R, Pignol J. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol. 2011; 56(15): 4631.
89.Toossi MTB, Ghorbani M, Mehrpouyan M, Akbari F, Sabet LS, Meigooni AS. A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles. Australasian phys Eng S. 2012; 35(2): 177-185.
90.Mesbahi A, Jamali F. Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts: BI. 2013; 3(1): 29.
91.Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol. 2005; 50(15): N163.
92.Roeske JC, Nuñez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol cancer Res T. 2007; 6(5): 395-401.
93.Pakravan D, Ghorbani M, Momennezhad M. Tumor dose enhancement by gold nanoparticles in a 6 MV photon beam: a Monte Carlo study on the size effect of nanoparticles. Nukleonika. 2013; 58.
94.Mousavie Anijdan S, Shirazi A, Mahdavi S, Ezzati A, Mofid B, Khoei S. Megavoltage dose enhancement of gold nanoparticles for different geometric set-ups: Measurements and Monte Carlo simulation. Iran J Radiat Res. 2012; 10(3): 183-186.
95.Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719-728.
96.Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S,  McEwan A, Roa W, Chen J, Xing JZ. Enhancement of radiation cytotoxicity in breast‐cancer cells by localized attachment of gold nanoparticles. Small. 2008; 4(9): 1537-1543.
97.Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB,  Muir MF, Dickson GR, Prise KM, Currell FJ, O›Sullivan JM, Hirst DG. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol. 2011; 79(2): 531-539.
98.Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC,  Wang CL, Kempson IM, Hwu Y, Lai TC, Hsiao M, Yang CS, Chen YJ, Margaritondo G. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol. 2010; 55(4): 931-945.
99.Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S,  Pervez N, Yee D, Moore R, Roa W. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Invest Med. 2008; 31(3): 160-167.
100.Sim L, Fielding A, English M, Waclawik E, Rockstroh A, Soekmadji C. Enhancement of biological effectiveness of radiotherapy treatments of prostate cancer cells in vitro using gold nanoparticles. International Nanomedicine Conference, 14-16th July 2011.
101.Wang C, Jiang Y, Li X, Hu L. Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (MDA-MB-231). Breast Cancer. 2015; 22(4): 413-420.
102.Coulter J, Hyland W, Nicol J, Currell F. Radiosensitising nanoparticles as novel cancer therapeutics—pipe dream or realistic prospect?. Clin Oncol. 2013; 25(10): 593-603.
103.Neshastehriz A, Tabei M, Maleki S, Eynali S, Shakeri-Zadeh A. Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6 MV X-ray on mouth epidermal carcinoma cells. J Photochem Photobiol B. 2017; 172: 52-60.
104.Soleymanifard S, Rostami A, Aledavood SA, Matin MM, Sazgarnia A. Increased radiotoxicity in two cancerous cell lines irradiated by low and high energy photons in the presence of thio-glucose bound gold nanoparticles. Int J Radiat Biol. 2017; 93(4): 407-415.
105.Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004; 49(18): N309.
106.Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HHW, Wu CL. Increased apoptotic potential and dose‐enhancing effect of gold nanoparticles in combination with single‐dose clinical electron beams on tumor‐bearing mice. Cancer Sci. 2008; 99(7): 1479-1484.
107.Anijdan SHM, Mahdavi SR, Shirazi A, Zarrinfard MA, Hajati J. Megavoltage X-ray dose enhancement with gold nanoparticles in tumor bearing mice. Int J Mol Cell Med. 2013; 2(3): 118.
108.Hebert E, Debouttiere P, Hunting D, Lepage M, Sanche L. MRI detectable gadolinium-coated gold nanoparticles for radiotherapy. Int J Radiat Oncol Biol Phys. 2008; 72: S715-716.
109.Chow JC, Leung MK, Jaffray DA. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys Med Biol. 2012; 57(11): 3323.
110.Meesungnoen J, Jay-Gerin J-P, Filali-Mouhim A, Mankhetkorn S. Low-energy electron penetration range in liquid water. Radiat Res. 2002; 158(5): 657-660.
111.McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT,  Schettino G, Dickson GR, Hounsell AR, O’Sullivan JM, Prise KM, Hirst DG, Currell FJ. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol. 2011; 100(3): 412-416.
112.Song K, Xu P, Meng Y, Geng F, Li J, Li Z. Smart gold nanoparticles enhance killing effect on cancer cells. Int J Oncol. 2013; 42(2): 597-608.
113.Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep. 2018; 8(1): 3815.
114.Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 2005; 11(9): 3530-3534.
115.Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249.