A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application

Document Type: Research Paper

Authors

1 Advanced Materials Research Centre, Department of Materials Science and Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Mechanical Engineering Department, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran

3 Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

4 New Technologies Research Center, Amirkabir University of Technology, Tehran, 15875-4413, Iran

10.22038/nmj.2020.07.007

Abstract

Objective(s): Tissue engineering aims to achieve a tissue, which has highly interconnected porous microstructure concurrent with appropriate mechanical and biological properties.
Materials and Methods: Therefore, the microstructure scaffolds are of great importance in this field. In the present study, an electroconductive poly-lactic acid (EC-PLA) filament used to fabricate a porous bone scaffold. For scaffolds model designed, solid-work software was used. Then, the designed modeled was transferred to simplify 3D to laminated with its G-Code file for fused deposition modeling (FDM) printer to create a scaffold with porosity around 65-75%. Two different shapes were designed and fabricated (cylindrical and cubic shape). The samples were coated with hydroxyapatite (HA) nanoparticle to enhance its chemical stability. In this study, the X-ray diffraction (XRD) confirmed that the EC-PLA is non-crystalized and scanning electron microscopy (SEM) used to present the apatite formation on the surface of porous scaffolds. The compression test, fracture toughness, and hardness were measured. The biological response in the physiological saline was performed to determine the rate of degradation of EC-PLA in phosphate buffer saline (PBS) and the apatite formation in the simulated body fluid (SBF) after 14 days.
Results: Finally, the biocompatibility of the porous architecture was monitored using human gum (HuGu) cells. The ABAQUS modeling simulation was used to compare the experimental and analytical results. The obtained results showed that by applying force to both cylindrical and cubic scaffold, the Von Mises Stress (VMS) could withstand the scaffold mentioned above at 9.7-11 MPa.
Conclusion: Therefore, it can be concluded that prepared porous scaffolds have a high potential in bone tissue engineering and probably the treatment of tumor-related bone defects as photothermal therapy. The porous EC-PLA scaffold was successfully fabricated and showed appropriate compressive strength (39.14 MPa), with controllable porosity of 60-70 %, which is a suitable candidate for replacing in bone tissues.

Keywords


1. Saber-Samandari S, & Gross K A. Micromechanical properties of single crystal hydroxyapatite by nanoindentation. Acta Biomater. 2009; 5(6), 2206-2212.
2.Heydary H A, Karamian E, Poorazizi E, Heydaripour J, Khandan A. Electrospun of polymer/bioceramic nanocomposite as a new soft tissue for biomedical applications. . Asian Ceram. Soc. 2015; 3(4), 417-425.
3.Moghadas B K. Akbarzadeh A, Azadi M, Aghili A, Rad A S, Hallajian S. The morphological properties and biocompatibility studies of synthesized nanocomposite foam from modified polyethersulfone/graphene oxide using supercritical CO2. J Macromol Sci A. 2020; 1-10.
4.Kamyab Moghadas B, Azadi M. Fabrication of Nanocomposite Foam by Supercritical CO2 Technique for Application in Tissue Engineering. J Tiss Mater. 2019; 2(1), 23-32.
5. Aghdam H A, Sanatizadeh E, Motififard M, Aghadavoudi F, Saber-Samandari S, Esmaeili S, Khandan A. Effect of calcium silicate nanoparticle on the surface feature of calcium phosphates hybrid bio-nanocomposite using for bone substitute application. Powder Technol. 2020; 361, 917-929.
6.Costantini M, Colosi C, Mozetic P, Jaroszewicz J, Tosato A, Rainer A, Barbetta A. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds. Mat Sci Eng C-Mater. 2016; 62, 668-677.
7. Farazin A, Aghdam H A, Motififard M, Aghadavoudi F, Kordjamshidi A, Saber-Samandari S, Khandan A. A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micro-mechanical Investigation. J Nanoanaly. 2019.
8. Tahririan M A, Motififard M, Omidian A, Aghdam H A, Esmaeali A. Relationship between bone mineral density and serum vitamin D with low energy hip and distal radius fractures: A case-control study. Arch Bone Joint Surg. 2017; 5(1), 22.
9. Kordjamshidi A, Saber-Samandari S, Nejad M G, Khandan A. Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug-using freeze-drying technique: Fabrication, characterization and simulation. Ceram Int. 2019; 45(11), 14126-14135.
10. Datta S, Das A, Sasmal P, Bhutoria S, Roy Chowdhury A, Datta P. Alginate-poly (amino acid) extrusion printed scaffolds for tissue engineering applications. Int J Polym Mater Po. 2020; 69(2), 65-72.
11.Esmaeili S, Shahali M, Kordjamshidi A, Torkpoor Z, Namdari F, Samandari S S, Khandan A.An artificial blood vessel fabricated by 3D printing for pharmaceutical applications. Nanomed J. 2019; 6(3), 183-194.
12. Esmaeili S, Aghdam H A, Motififard M, Saber-Samandari S, Montazeran A H, Bigonah M, Khandan A. A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation. Eur J Orthop Surg Traumatol. 2020; 30(1), 123-131.
13. Esmaeili S, Khandan A, Saber-Samandari S. Mechanical performance of three-dimensional bio-nano composite scaffolds designed with digital light processing for biomedical applications. Iran J Med Phys. 2018; 15, 328-328.
14. Khandan, A., & Ozada, N. Bredigite-Magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: A study on their magnetic properties.  J Alloy Compd. 2017; 726, 729-736.
15.Khandan A, Ozada N, Saber-Samandari S, Nejad M G. On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds. Ceram Int. 2018; 44(3), 3141-3148.
16.Serra T, Planell J A, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta biomater. 2013; 9(3), 5521-5530.
17. Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger R E, Kirkpatrick C J, Motta A. Influence of scaffold pore size on collagen I development: a new in vitro evaluation perspective. J Bioact Compat Pol. 2013; 28(1), 16-32.
18.Giordano R A, Wu B M, Borland S W, Cima L G, Sachs E M, Cima M J. Mechanical properties of dense polylactic acid structures fabricated by three-dimensional printing. J Biomat Sci, Polymer Edition. 1997; 8(1), 63-75.
19.Velioglu Z B, Pulat D, Demirbakan B, Ozcan B, Bayrak E, Erisken C. 3D-printed poly (lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization. Connect Tissue Res. 2019; 60(3), 274-282.
20.Fafenrot S, Grimmelsmann N, Wortmann M, Ehrmann A.Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Mater. 2017; 10(10), 1199.
21. Sahmani S, Saber-Samandari S, Shahali M, Yekta H J, Aghadavoudi F, Montazeran A H, Khandan A. Mechanical and biological performance of axially loaded novel bio-nano composite sandwich plate-type implant coated by biological polymer thin film. J Mech Behav Biomed. 2018; 88, 238-250.
22. Kenry L W, Loh K P, Lim C T. When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials. 2018; 155, 236-250.
23.Bohner M, Lemaitre J.Can bioactivity be tested in vitro with the SBF solution?. Biomaterials, 2009; 30(12), 2175-2179.
24.Monfared R M, Ayatollahi M R, Isfahani R B. Synergistic effects of hybrid MWCNT/nano-silica on the tensile and tribological properties of woven carbon fabric epoxy composites. Theor Appl Fract Mec. 2018; 96, 272-284.
25. Moradi-Dastjerdi R, Behdinan K.Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers. Int J Mech Sci. 2020; 167, 105283.
26. Khandan A, Jazayeri H, Fahmy M D,Razavi M. Hydrogels: Types, structure, properties, and applications. Biomat Tiss Eng. 2017; 4(27), 143-69.
27.Ayatollahi M R, Moghimi Monfared R, Barbaz Isfahani R. Experimental investigation on tribological properties of carbon fabric composites: effects of carbon nanotubes and nano-silica. P I Mech Eng L-J Mat. 2019; 233(5), 874-884.
28. Montazeran A H, Saber Samandari S, Khandan A. Artificial intelligence investigation of three silicates bioceramics-magnetite bio-nano composite: Hyperthermia and biomedical applications. Nanomed J. 2018; 5(3), 163-171.
29. Joneidi Yekta H, Shahali M, Khorshidi S, Rezaei S, Montazeran AH, Samandari SS, Khandan A. Mathematically and experimentally defined porous bone scaffold produced for bone substitute application. Nanomed J. 2018; 5(4), 227-234.
30. Barbaz-I R. Experimental determining of the elastic modulus and strength of composites reinforced with two nanoparticles (Doctoral dissertation, MSc Thesis, School of Mechanical Engineering Iran University of Science and Technology, Tehran, Iran); 2014.
31. Karamian E, Nasehi A, Saber-Samandari S, Khandan A. Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique. Nanomed J. 2017; 4(3), 177-183.
32. Khandan A, Karamian E, Bonakdarchian M. Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering. Dent Hypoth. 2014; 5(4), 155.
33.Salami MA, Kaveian F, Rafienia M, Saber-Samandari S, Khandan A,Naeimi M. Electrospun polycaprolactone/lignin-based nanocomposite as a novel tissue scaffold for biomedical applications. J. Medical Signals Sens. 2017; 7(4), 228.
34. Khandan A, Karamian E, Mehdikhani-Nahrkhalaji M, Mirmohammadi H, Farzadi A, Ozada N, Zamani K. Influence of spark plasma sintering and baghdadite powder on mechanical properties of hydroxyapatite. Proce Mat Sci. 2015; 11, 183-189.
35. Ghayour H, Abdellahi M, Nejad M G, Khandan A,Saber-Samandari S. Study of the effect of the Zn 2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co 1− x Zn x Fe 2 O 4 ferrite for magnetic hyperthermia. J Aust Ceram Soc. 2018; 54(2), 223-230.
36. Sahmani S, Shahali M, Nejad M G, Khandan A, Aghdam MM, Saber-Samandari S. Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering. Eur Phys J Plus. 2019; 134(1), 7.
37. Sahmani S, Khandan A, Esmaeili S, Saber-Samandari S, Nejad M G, Aghdam MM.Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: Fabrication, characterization, and simulation. Ceram Int. 2020; 46(2), 2447-2456.
38. Wibowo A, Vyas C, Cooper G, Qulub F, Suratman R, Mahyuddin A I, Bartolo P. 3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. Materials, 2020; 13(3), 512.
39. Potnuru A,Tadesse Y. Investigation of polylactide and carbon nanocomposite filament for 3D printing. Prog Add Manu. 2019; 4(1), 23-41.
40. Amanjani A R, Zandi R, Samandari S S. Determination of anterior femoral bowing to length ratio in Iranian population. Pajoohandeh J. 2020; 24(1), 0-0.
41.Saber-Samandari S, Mohammadi-Aghdam M, Saber-Samandari S. A novel magnetic bifunctional nanocomposite scaffold for photothermal therapy and tissue engineering. Int J Biol Macromol. 2019; 138, 810-818.
42. Bidgoli M R, Alemzadeh I, Tamjid E, Khafaji M,Vossoughi M. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Mat Sci Eng C-Mater. 2019; 103, 109688.
43. Maghsoudlou M A, Nassireslami E, Saber-Samandar S, Khandan A. Bone regeneration using bio-nanocomposite tissue reinforced with bioactive nanoparticles for femoral defect applications in medicine. Avicenna J. Med. Biotechno. 2020; (2).
44.Maghsoudlou M A, Isfahani R B, Saber-Samandari S, Sadighi M. Effect of interphase, curvature, and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations. Compos Part B-Eng. 2019; 175, 107119.
45.Tamjidi S, Esmaeili H, Moghadas B K. Application of magnetic adsorbents for the removal of heavy metals from wastewater: a review study. Materials Research Express. 2019; 6(10), 102004.
46.Rad A S, Samipour V, Movaghgharnezhad S, Mirabi A, Shahavi M H, Moghadas B K. X12N12 (X= Al, B) clusters for protection of vitamin C; molecular modeling investigation. Surf Interf, 2019; 15, 30-37.
47. Shokri‐Oojghaz R, Moradi‐Dastjerdi R, Mohammadi H, Behdinan K. Stress distributions in nanocomposite sandwich cylinders reinforced by aggregated carbon nanotube. Polym Composite. 2019; 40(S2), E1918-E1927.
48. Pourasghar A, Moradi‐Dastjerdi R, Yas M H, Ghorbanpour Arani A, Kamarian S. Three‐dimensional analysis of carbon nanotube‐reinforced cylindrical shells with temperature‐dependent properties under thermal environment. Polym Composite. 2018; 39(4), 1161-1171.