Berberine nanomicelles attenuate cirrhotic cardiomyopathy in rats: Possible involvement of the NO-cGMP signaling

Document Type: Research Paper


1 Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Pharmacology & Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University of Tehran, Iran (IAUPS)



Objective(s): In cirrhotic cardiomyopathy, a rise in pro-inflammatory cytokines results in the up-regulation of inducible nitric oxide synthase (iNOS), and the overproductions of nitric oxide (NO) and cyclic guanosine 3’, 5’ monophosphate (cGMP). Berberine (BBR), an isoquinoline-derived alkaloid isolated from Rhizoma coptidis, possesses anti-inflammatory, anti-oxidative, and cardioprotective properties. In this study, the effect of BBR-loaded micelles in a rat model of cirrhotic cardiomyopathy resulted from bile duct-ligation (BDL) was examined. Further, a possible role for NO-cGMP signaling was clarified.
Materials and Methods: Cirrhotic rats were orally treated with BBR-loaded micelles (50 mg/kg), free BBR (50 and 100 mg/kg) and silymarin (100 mg/kg). A selective iNOS inhibitor, aminoguanidine (AG) 100 mg/kg, i.p., was administered. iNOS expression and nitrite concentration were calculated using immunohistochemistry (IHC) and Griess reagent methods, respectively. Besides, ventricular tumor necrosis factor-alpha (TNF-α), cGMP, and serum interleukin -1beta (IL-1β) were measured using ELISA kits.
Results: TNF-α and IL-1β, nitrite, cGMP, and the expression of iNOS increased significantly in BDL rats. However, BBR (100 mg/kg), nanoBBR (50 mg/kg), and silymarin markedly lowered the levels of these markers. Notably, AG increased the nanoBBR effect.
Conclusion: This cardioprotective effect of nanoBBR probably mediated at least in part by down-regulations of the NO-cGMP pathway, and the inflammatory mediators.


1.Ma Z, A Miyamoto, SS Lee. Role of altered beta-adrenoceptor signal transduction in the pathogenesis of cirrhotic cardiomyopathy in rats. Gastroenterology, 1996; 110(4): 1191-1198.
2.Liu H, Z Ma, SS Lee. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct–ligated rats. Gastroenterology. 2000; 118(5): 937-944.
3.Liu H, D Song, SS Lee. Role of heme oxygenase-carbon monoxide pathway in pathogenesis of cirrhotic cardiomyopathy in the rat. Am J Physiol Gastrointest. Liver Physiol. 2001; 280(1): G68-G74.
4.Rubio AR, MA Morales-Segura. Nitric oxide, an iceberg in cardiovascular physiology:: Far beyond vessel tone control. Arch Med Res. 2004; 35(1): 1-11.
5.Kumar A, B Paladugu, J Mensing, A Kumar, JE Parrillo. Nitric oxide-dependent and-independent mechanisms are involved in TNF-α-induced depression of cardiac myocyte contractility. Am J Physiol Regul Integr Comp Physiol. 2007; 292(5): R1900-R1906.
6.Guarner C, G Soriano, A Tomas, O Bulbena, MT Novella, J Balanzo, F Vilardell, M Mourelle, S Moncada. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology. 1993; 18(5): 1139-1143.
7.Morales‐Ruiz M, W Jimenez, D Perez‐Sala, J Ros, A Leivas, S Lamas, F Rivera, V Arroyo. Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology. 1996; 24(6): 1481-1486.
8.Kelly RA, J-L Balligand, TW Smith. Nitric oxide and cardiac function. Circ Res. 1996; 79(3): 363-380.
9.Herring N, EJ Danson, DJ Paterson. Cholinergic control of heart rate by nitric oxide is site specific. Physiology. 2002; 17(5): 202-206.
10.Mónica F, K Bian, F Murad. The Endothelium-Dependent Nitric Oxide–cGMP Pathway, in Adv Pharmaco. 2016; Elsevier. 1-27.
11.Račková L, M Májeková, D Košt’álová, M Štefek. Antiradical and antioxidant activities of alkaloids isolated from Mahonia aquifolium. Structural aspects. Bioorg. Med. Chem. 2004; 12(17): 4709-4715.
12.Stermitz FR, P Lorenz, JN Tawara, LA Zenewicz, K Lewis. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5-methoxyhydnocarpin, a multidrug pump inhibitor. PNAS. 2000; 97(4): 1433-1437.
13.Tabeshpour J, M Imenshahidi, H Hosseinzadeh. A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci. 2017; 20(5): 557.
14.Tan HL, KG Chan, P Pusparajah, A Duangjai, S Saokaew, T Mehmood Khan, LH. Lee, BH Goh. Rhizoma coptidis: a potential cardiovascular protective agent. Front. Pharmacol. 2016; 7: 362.
15.Lee IA, YJ Hyun, DH Kim. Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF-κB activation. Eur J Pharmacol. 2010; 648(1-3): 162-170.
16.Xiao M, LN Men, MG Xu, GB Wang, HT Lv, C Liu. Berberine protects endothelial progenitor cell from damage of TNF-α via the PI3K/AKT/eNOS signaling pathway. Eur J Pharmacol.2014; 743: 11-16.
17.Zhang BJ, D Xu, Y Guo, J Ping, Lb Chen, H Wang. Protection by and anti‐oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors. Clin Exp Pharmacol P. 2008; 35(3): 303-309.
18.Chen K, G Li, F Geng, Z Zhang, J Li, M Yang, L Dong, F Gao. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K–Akt signaling in diabetic rats. Apoptosis. 2014; 19(6): 946-957.
19.Huang Z, Z Han, B Ye, Z Dai, P Shan, Z Lu, K Dai, C Wang, W Huang. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol. 2015; 762: 1-10.
20.Lau CW, XQ Yao, ZY Chen, WH Ko, Y Huang. Cardiovascular actions of berberine. Cardiovasc. Drug Rev. 2001; 19(3): 234-244.
21.Zhang T, S Yang, J Du. Protective effects of berberine on isoproterenol-induced acute myocardial ischemia in rats through regulating HMGB1-TLR4 axis. Evid. Based Complementary Altern. Med. 2014. 2014.
22.Gao J, Yq Tang, D z Dai, Y s Cheng, G l Zhang, C Zhang, Y Dai. Raisanberine protected pulmonary arterial rings and cardiac myocytes of rats against hypoxia injury by suppressing NADPH oxidase and calcium influx. Acta Pharmacol Sin. 2012; 33(5): 625.
23.Qi M y, Y Feng, D z Dai, N Li, Y s Cheng, Y Dai. CPU86017, a berberine derivative, attenuates cardiac failure through normalizing calcium leakage and downregulated phospholamban and exerting antioxidant activity. Acta Pharmacol. Sin. 2010; 31(2): 165.
24.Zeng X H, X J Zeng, Y Y Li. Efficacy and safety of berberine for congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 2003; 92(2): 173-176.
25.Pirillo A, A L Catapano, Berberine. a plant alkaloid with lipid-and glucose-lowering properties: from in vitro evidence to clinical studies. Atherosclerosis. 2015; 243(2): 449-461.
26.Shen R, J J Kim, M Yao, T A Elbayoumi. Development and evaluation of Vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical. Int J Nanomedicine. 2016; 11: 1687.
27.Chen W, S Wei, Y Yu, H Xue, F Yao, M Zhang, J Xiao, G M Hatch, L Chen. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5′ monophosphate kinase activity. Eur J Pharmacol. 2016; 779: 80-90.
28.Allijn I E, B M Czarny, X Wang, S Y Chong, M Weiler, A E Da Silva, J M Metselaar, C S P Lam, G Pastorin, D P de Kleijn. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J Control Release. 2017; 247:. 127-133.
29.Khoshnoodi M, N Fakhraei, A R Dehpour. Possible involvement of nitric oxide in antidepressant-like effect of silymarin in male mice. Pharm Biol. 2015; 53(5): 739-745.
30.Rao P R, R K Viswanath. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp Clin Cardiol. 2007; 12(4): 179.
31.Tuorkey M J, N I El Desouki, R A Kamel. Cytoprotective effect of silymarin against diabetes-induced cardiomyocyte apoptosis in diabetic rats. Biomed. Environ Sci. 2015; 28(1): 36-43.
32.Domitrović R, H Jakovac, G Blagojević. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl4-intoxicated mice. Toxicology. 2011; 280(1-2): 33-43.
33.Pishva S P, E Mousavi, Z Mousavi, M R Jaafari, A R Dehpour, R Sorkhabadi, S Mahdi. The effect of berberine nanomicelles on hepatic cirrhosis in bile duct-ligated rats. Nanomed J. 2018; 5(4): 199-209.
34.Ma Z, Y Zhang, P M Huet, S S Lee. Differential effects of jaundice and cirrhosis on β-adrenoceptor signaling in three rat models of cirrhotic cardiomyopathy. J Hepatol. 1999; 30(3): 485-491.
35.Abbasi A, A Joharimoqaddam, N Faramarzi, M Khosravi, I Jahanzad, A R Dehpour. Opioid receptors blockade modulates apoptosis in a rat model of cirrhotic cardiomyopathy. Ann Med Health Sci Res. 2014; 4(3): 404-409.
36.Fakhraei N, A H Abdolghaffari, B Delfan, A Abbasi, N Rahimi, A Khansari, R Rahimian, A R Dehpour. Protective effect of hydroalcoholic olive leaf extract on experimental model of colitis in rat: involvement of nitrergic and opioidergic systems. Phytother Res. 2014; 28(9): 1367-1373.
37.Miranda K M, M G Espey, D A Wink. A rapid. simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric oxide. 2001; 5(1): 62-71.
38.Mousavi S E, S M Rezayat, M Nobakht, S S S Saravi, I Yazdani, A Rashidian, A R Dehpour. Minocycline attenuates cirrhotic cardiomyopathy and portal hypertension in a rat model: Possible involvement of nitric oxide pathway. Iran J Basic Med ScI. 2016; 19(11): 1222.
39.Saravi S S S, M Ghazi-Khansari, S E Mehr, M Nobakht, S E Mousavi, A R Dehpour. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy. World J Gastroenterol. 2016; 22(19): 4685.
40.Yang Y Y, H Liu, S W Nam, G Kunos, S S Lee. Mechanisms of TNF-α-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNF-α and endocannabinoids. J Hepatol. 2010; 53(2): 298-306.
41.Bortoluzzi A, G Ceolotto, E Gola, A Sticca, S Bova, F Morando, S Piano, S Fasolato, S Rosi, A Gatta. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: molecular mechanisms. J Hepatol. 2013; 57(1): 266-276.
42.Mani A R, A Nahavandi, M Moosavi, R Safarinejad, A R Dehpour. Dual nitric oxide mechanisms of cholestasis‐induced bradycardia in the rat. Clin Exp Pharmacol Physiol. 2002; 29(10): 905-908.
43.Nahavandi A, A R Dehpour, A R Mani, H Homayounfar, A Abdoli, M R Abdolhoseini. The role of nitric oxide in bradycardia of rats with obstructive cholestasis. Eur J Pharmacol. 2001; 411(1-2): 135-141.
44.Clements W, P Erwin, M McCaigue, I Halliday, G Barclay, B Rowlands. Conclusive evidence of endotoxaemia in biliary obstruction. Gut. 1998; 42(2): 293-299.
45.Radomski M, R Palmer, S Moncada. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. PNAS. 1990; 87(24): 10043-10047.
46.Namiranian K, M Samini, S E Mehr, S A Gaskari, H Rastegar, H Homayoun, A R Dehpour. Mesenteric vascular bed responsiveness in bile duct-ligated rats: roles of opioid and nitric oxide systems. Eur J Pharmacol. 2001; 423(2-3): 185-193.
47.Mani A R, S Ippolito, R Ollosson, K P Moore. Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis. J Hepatol. 2006; 43(4): 847-856.
48.van Obbergh, L Y Vallieres, G Blaise. Cardiac modifications occurring in the ascitic rat with biliary cirrhosis are nitric oxide related. Journal of hepatology, 1996. 24(6): 747-752.
49.GARCÍA-ESTAÑ J, M C ORTIZ. Nitric oxide and renal and cardiac dysfunction in cirrhosis. Clin Sci. 2002; 102(2): 213-222.
50.Xiong C, Y Z Wu, Y Zhang, Z X Wu, X Y Chen, P Jiang, H C Guo, K R Xie, K X Wang, S W Su. Protective effect of berberine on acute cardiomyopathy associated with doxorubicin treatment. Oncol Lett. 2018; 15(4): 5721-5729.
51.Zhao X, J Zhang, N Tong, X Liao, E Wang, Z Li, Y Luo, H Zuo. Berberine attenuates doxorubicin-induced cardiotoxicity in mice. J Int Med Res. 2011; 39(5): 1720-1727.
52.Li X, M Gao, X Zhang, J Xie, J Xue, Y Wang. GW28-e0423 Berberine inhibits cardiomyocytes inflammation induced by ischemia though down-regulating toll-like receptors. JACC. 2017; 70(16 Supplement): C59.
53.Chang W, M Zhang, J Li, Z Meng, D Xiao, S Wei, L Chen, C Wang, G M Hatch. Berberine attenuates ischemia-reperfusion injury via regulation of adenosine-5-monophosphate kinase activity in both non-ischemic and ischemic areas of the rat heart. Cardiovasc Drug Ther. 2012; 26(6): 467-478.
54.Wang, Q., M. Zhang, B. Liang, N. Shirwany, Y. Zhu, and M.-H. Zou, Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: the role of uncoupling protein 2. PloS one. 2011; 6(9): e25436.
55.Chang W, K Li, F Guan, F Yao, Y Yu, M Zhang, G M Hatch, L Chen. Berberine Pretreatment Confers Cardioprotection Against Ischemia–Reperfusion Injury in a Rat Model of Type 2 Diabetes. J Cardiovasc Pharm T. 2016; 21(5): 486-494.
56.Yu L, Q Li, B Yu, Y Yang, Z Jin, W Duan, G Zhao, M Zhai, L Liu, D Yi. Berberine attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation response: role of silent information regulator 1. Oxid Med Cell Longev. 2016. 2016.
57.Dong S F, Y Hong, M Liu, Y Z Hao, H S Yu, Y Liu, J N Sun. Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats. Eur J Pharmacol. 2011; 660(2-3): 368-374.
58.Wang Y Y, Huang KS Lam, Y Li, W T Wong, H Ye, C W Lau, P M Vanhoutte, A Xu. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res. 2009; 82(3): 484-492.
59.Zeng X, Y Li. Clinical observations of the effect of berberine for congestive heart failure. US Chinese J Angiocardiomyopathy. 2001; 6: 308-311.