Hemocompatibility poly (lactic acid) nanostructures: A bird’s eye view

Document Type: Review Paper

Authors

1 Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

2 The Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran

10.22038/nmj.2020.07.00002

Abstract

The usage of clinical devices in the cardiovascular treatment, hemodialyze system and other biomedical applications has improved recently. Direct contacts of biomaterials like poly(lactic acid) biopolymer with blood result in the activating of platelets, white blood cells , coagulation structure and complement cascades.
Poly(lactic acid) is a sustainable, renewable, compostable, biobased, biodegradable, bioabsorbable , biocompatible polymer. This polymer has many applications in the synthesis of blood contacting mats like nanofibrous vascular scaffolds and hemodialyze nanosheets.
Mechanical interruption of the blood vessel wall throughout grafting of cardiovascular devices starts local hemostatic replies. Improving the safety of the blood contacting nanostructure grafts is a main necessity. The controlling of the interactions of proteins and platelets to the surface of a blood contacting biomaterial is a significant factor. So, the assessments of these material’s influences on blood are necessary.
This article references more than 80 articles published in the last decade and reviews the latest hemocompatibility assays of poly(lactic acid) nanostructures used in the blood contacting field.

Keywords


1.Daly AC, Pitacco P, Nulty J, Cunniffe GM, DJ. K. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomater. 2018; 162 (57): 34-46.
2.Dhanka M, Chaitra Shetty, Srivastava R. Injectable methotrexate loaded polycaprolactone microspheres:Physicochemical characterization, biocompatibility, and hemocompatibility evaluation. Mater Sci Eng C. 2017; 81: 542–550.
3.Fattahi FS, Khoddami A, Avinc O. Nano-Fibrous and Tubular Poly (lactic acid) Scaffolds for Vascular Tissue Engineering. Nanomed Res J. 2019; 4 (3): 141-156.
4.Thottappillil N, Nair PD. Scaffolds in vascular regeneration:current status. Vascular Heal Risk Man. 2015; 11: 79–91.
5.Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Reg Med. 2015;9 (8):861-888.
6.Wang H, Hou W, Liu F, Han Q, Li T, Lin H, Deng G, He J. Preparation and evaluation of a self-anticlotting dialyzer via an interface crosslinking approach. J Mem Sci. 2018; 563: 115–125.
7.Ye K, Kuang H, You Z, Morsi Y, Mo X. Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharm. 2019; 11.
8.Drews JD, Miyachi H, Shinoka T. Tissue-engineered vascular grafts for congenital cardiac disease: Clinicalexperience and current status. Trends Cardiovasc Med. 2017; 27: 521–531.
9.Wang H, Hou W, Liu F, Han Q, Li T, Lin H, Deng G, He J. Preparation and evaluation of a self-anticlotting dialyzer via an interface crosslinking approach. J Mem Sci. 2018: 115–125.
10.Horakova J, Mikes P, Saman A, Svarcova T, Jencova V, Suchy T, Heczkova B, Jakubkova S, Jirousova J, Prochazkova R. Comprehensive assessment of electrospun scaffolds hemocompatibility. Mat Sci Eng C. 2018; 82: 330-335.
11.H. E. Burton, J. M. Freij, Espino DM. Dynamic viscoelasticity and surface properties of porcine left anterior descending coronary arteries. Cardiovas Eng Tech. 2017; 8 (1): 41–56.
12.Wang H, Hou W, Liu F, Han Q, Li T, Lin H, Deng G, He J. Preparation and evaluation of a self-anticlotting dialyzer via an interface crosslinking approach. J Mem Sci. 2018; 563: 115–125.
13.Marbod Weber, Heidrun Steinle, Sonia Golombek, Ludmilla Hann, Christian Schlensak, Wendel HP, Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Frontiers Bioeng Biotech. 2018; 6.
14.Blok SLJ, Engels GE, van Oeveren W. In vitro hemocompatibility testing. Imp fresh blood Biointer. 2016;11(2).
15.Elahi MF, Guan G, Wang L, MW. K. Improved hemocompatibility of silk fibroin fabric using layer- by-layer polyelectrolyte deposition and heparin immobilization. J Appl Polym Sci. 2014: 1–12.
16.Burton HE, Espino DM. The Effect of Mechanical Overloading on Surface Roughness of the Coronary Arteries. Appl Bionic Biomech. 2019.
17.Derakhshandeh H, Kashaf SS, Aghabaglou F, Ghanavati IO, Tamayol A. Smart Bandages: The Future of Wound Care. Trend Biotech. 2018; 36 (12).
18.ASTM E2524-08. Standard Test Method for Analysis of Hemolytic Properties of Nanoparticles West Conshohocken, PA: ASTM International, 2013 (Available online at: https://www.astm.org/Standards/E2524.htm) (accessed September 26, 2018).
19.Horakova J, Mikes P, Saman A, Svarcova T, Jencova V, Suchy T, Heczkova B, Jakubkova S, Jirousova J, Prochazkov R. Comprehensive assessment of electrospun scaffolds hemocompatibility. Mat Sci Eng C. 2018; 82: 330–335.
20.Balan V, Verestiuc L. Strategies to improve chitosan hemocompatibility: A review. Eur Polym J. 2014; 53: 171-188.
21.Mukesh D, Chaitra S, Srivastava R. Injectable methotrexate loaded polycaprolactone microspheres: Physicochemical characterization, biocompatibility, and hemocompatibility evaluation. Mat Sci Eng C. 2017; 81: 542–550.
22.Jung F, Braune S, Lendlein A. Haemocompatibility testing of biomaterials using human platelets. Clin Hem Microcir. 2013; 53: 97–115.
23.King RE, Lau HK, Zhang H, Sidhu I, Christensen MB, Fowler EW, Li L, Jia X, Kiick KL, Thibeault SL. Biocompatibility and Viscoelastic Properties of Injectable Resilin-Like Polypeptide and Hyaluronan Hybrid Hydrogels in Rabbit Vocal Folds. Reg Eng Tran Med. 2019.
24.Pankaj K-A-K-S, Atul D, Babita K, Subhasree R-C, Karmakar S. 1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohyd Polym. 2018; 180: 365–375.
25.Renee E, Ishnoor S-M, Christensen E-W-F, Linqing L, Xinqiao J-K-L, Kiick S-L-T. Biocompatibility and Viscoelastic Properties of Injectable Resilin-Like Polypeptide and Hyaluronan Hybrid Hydrogels in Rabbit Vocal Folds. Reg Eng Trans Med. 2019.
26.Gugutkov D, Gustavsson J, Cantini M, Salmeron-Sánchez M, Altankov G. Electrospun fibrinogen–PLA nanofibres for vascular tissue engineering. J Tissue Eng Reg Med. 2017; 11(10): 2774-2784.
27.Zhao X-W, Lin Y, Phil C, Fin C-R, Michase l-M. Structure and blood compatibility of highly oriented poly(lactic acid)/thermoplastic polyurethane blends produced by solid hot stretching. . Polym Adv Technol. 2013; 249: 853–860.
28.Fattahi F, Izadan H, Khoddami A. Deep Dyeing of Poly (lactic acid) and Poly (ethylene terephthalate) Fabrics Using UV/Ozone Irradiation. 4th International Color and Coatings Congress (ICCC 2011), November 22-24, Tehran-Iran, 2011.
29.Fattahi F, Izadan H, Khoddami A. Investigation into the Effect of UV/Ozone Irradiation on Dyeing Behaviour of Poly(Lactic Acid) and Poly(Ethylene Terephthalate) Substrates. Prog Color Colorants Coat. 2012; 5: 15-22.
30.Khoddami A, Avinc O, Ghahremanzadeh F. Improvement in poly(lactic acid) fabric performance via hydrophilic coating. Progress in Organic Coatings. 2011;72 (3):299-304.
31.Khoddami A, Avinc O, Mallakpour S. A novel durable hydrophobic surface coating of poly(lactic acid) fabric by pulsed plasma polymerization. Prog Org Coat. 2010; 67 (3): 311-316.
32.Avinc O, Khoddami A, Hasani H. A mathematical model to compare the handle of PLA and PET knitted fabrics after different finishing steps. Fiber Poly. 2011;12 (3):405-413.
33.Doustgani A, Ahmadi E. Melt electrospinning process optimization of polylactic acid nanofibers. J Ind Text. 2016; 45(4): 626-634.
34.Jain A, Kunduru KR, Basu A, Mizrahi B, Domb AJ, Khan W. Injectable formulations of poly(lactic acid) and its copolymers in clinical use. Adv Drug Del Rev. 2016; 107: 213-227.
35.Alves PE, Soares BG, Lins LC, Livi S, Santos EP. Controlled delivery of dexamethasone and betamethasone from PLA electrospun fibers: A comparative study. Eur Polym J. 2019.
36.Sadat Fattahi F, Khoddami A, Avinc O, Poly (Lactic Acid) Nano-fibers as Drug-delivery Systems: Opportunities and Challenges. Nanomed Res J. 2019; 4 (3): 130-140.
37.Anna Magiera, JarosBaw Markowski, Elzbieta Menaszek, Jan Pilch, Blazewicz S. PLA-Based Hybrid and Composite Electrospun Fibrous Scaffolds as Potential Materials for Tissue Engineering. J Nanomater. 2017.
38.Scaffaro R, Lopresti F, Marino A, Nostro A. Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives. Appl Microb Biotech. 2018; 102: 7739–7756.
39.Zhou M, Yang J, Ye X, Zheng A, Li G, Yang P, Zhu Y, Cai L. Blood Platelet’s Behavior on Nanostructured Superhydrophobic Surface. J Nano Res. 2008;2:129-136.
40.Awad NK, Niu H, Ali U, Morsi YS, 2 TL. Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review. Memb. 2018; 8(15).
41.Li G-C, Yang P, Qin W, Manfred F-M, Zhou S-N-H. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomater. 2011; 32: 4691–4703.
42.Fattahi F-S, Khoddami A, Izadian H. Review on Production, Properties, and Applications of Poly(lactic acid) Fibers. J Text Sci Techn. 2015; 5(1): 11-17.
43.Fattahi F-S, Khoddami A, Izadan H. A Review on Poly(lactic acid) Textile Goods Finishing: Plasma Treatment, UV/Ozone Irradiation, Superhydrophobic Surface Manufacturing and Enzymatic Treatment. J Apparel Text Sci Tech. 2017(2): 19-26.
44.Fattahi F, Poly (lactic acid) Nanofibers as novel drug delivery systems: A Birds Eye View. LAMBERT Academic Publishing, 978-620-0-49758-1, 2019.
45.Nofar M, Sacligil D, Carreau PJ, Kamal M-R, Heuzey M-C. Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol. 2019;125: 307-360.
46.Amani A, Kabiri T, Shafiee S, Hamidi A. Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems. Iran J Pharm Res. 2019; 18 (1): 125-141.
47.Handali S, Moghimipour E, Rezaei M, Saremy S, Dorkoosh FA. Co-delivery of 5-fluorouracil and oxaliplatin in novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid)/poly(lactic-co-glycolic acid) nanoparticles for colon cancer therapy. . Int J Biol Macromol. 2019;124: 1299–1311.
48.Ghasemi R, Abdollahi M, Zadeh EE, Khodabakhshi K, Badeli A, Bagheri H, Hosseinkhani S. mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci Rep. 2018.
49.Birhanu G, Tanha S, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Kiani Dehkordi B. Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Pharm Dev Tech. 2018:1-10.
50.Mao Z, Li J, Huang W, Jiang H, Zimba B, Chen L, Wan J, Wu Q. Preparation of poly(lactic acid)/graphene oxide nanofiber membranes with different structures by electrospinning for drug delivery; 2018: 16619-16625.
51.Mohiti-Asli M, Saha S, Murphy S-V, Gracz H, Pourdeyhimi B, Atala A, Loboa E-G. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J Biomed Mater Res B: Appl Biomater. 2015; 105 (2): 327-339.
52.Riggin C-N, Qu F, Kim D-H, Huegel J, Steinberg D-R, Kuntz A-F, Soslowsky L-J, Mauck R-L, Bernstein J. Electrospun PLGA Nanofiber Scaffolds Release Ibuprofen Faster and Degrade Slower after In Vivo Implantation. Ann Biomed Eng. 2017; 45(10).
53.Zhang L, Zhu H, Gu Y, XiaohuaWang, Wu P. Dual drug-loaded PLA nanoparticles bypassing drug resistance for improved leukemia therapy. J Nanopart Res. 2019; 21(83).
54.Neha-Atulkumar S, Abul-Kalam A-M, Khan Z-A. Fabrication of PLA-PEG Nanoparticles as Delivery Systems for Improved Stability and Controlled Release of Catechin. J Nanomater. 2017.
55.Foong CY, Hamzah MSA, Razak SIA, Saidin S, Nayan NHM. Influence of Poly(lactic acid) Layer on the Physical and Antibacterial Properties of Dry Bacterial Cellulose Sheet for Potential Acute Wound Healing Materials. Fiber Polym. 2018; 19 (2): 263-271.
56.Birhanu G, Tanha S, Akbari-Javar H, Seyedjafari E, Zandi-Karimi A, Dehkordi B-K. Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Pharm Dev Tech. 2018.
57.Magiera A, Markowski J, Menaszek E, Pilch J, Blazewicz S. PLA-Based Hybrid and Composite Electrospun Fibrous Scaffolds as Potential Materials for Tissue Engineering. J Nanomater. 2017.
58.Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A. PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS App Mater Inter. 2017; 9(23): 20132-20141.
59.Sho K, Okumura N, Junji K, Noriko K, Tabata Y. Development of Poly Lactic/Glycolic Acid (PLGA) Microspheres for Controlled Release of Rho-Associated Kinase Inhibitor. J Ophthal, 2017.
60.Mehdikhani M, Tavakoli E, Zargar-Kharazi A, Hashemibeni B. A novel nano-composite scaffold for cartilage tissue engineering. Scientia Iranica. 2018;25 (3):1815-1823.
61.Fattahi F-s, Khoddami A, Avinc O. Poly(lactic acid) (PLA) Nanofibers for Bone Tissue Engineering. J Text Polym. 2019; 7(2): 47-64.
62.G. Pitarresi, C. Fiorica, F. S. Palumbo, S. Rigogliuso, G. Ghersi, G. Giammona. Heparin functionalized polyaspartamide/polyester scaffold for potential blood vessel regeneration,. J Biomed Mater Res A. 2014;102 (5):1334–1341.
63.Krawiec J-T. Adult stem cell-based tissue engineered blood vessels: a review. Biomater. 2012; 33: 3388–3400.
64.Reno F, Paul G, Rizzi M, Gatti G, L M. Poly (D,L) lactic acid blending with vitamin e increases polymer hemocompatibility: an hydrophilic effect. J Appl Polym Sci. 2013; 129(3):1527–1533.
65.Shalumon KT, Chennazhi KP, Anupama MS, Jayakumar R, Deepthi S, Nair SV. Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol macromol. 2015; 9.
66.Zhang C, Wen J, Yan J, Kao Y, Ni Z, Cui X, Wang H. In situ growth induction of the corneal stroma cells using uniaxially aligned composite fibrous scaffolds. RSC Adv. 2015; 5: 12123–12130.
67.V M. After soft tissues, bone, drug delivery and packaging,PLA aims at blood. Eur Polym J. 2015; 68: 516–552.
68.Koh L-B, Rodriguez I, Venkatraman S-S. A novel nanostructured poly(lactic-co-glycolic-acid)–multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies. Acta Biomaterialia. 2009; 5: 3411–3422.
69.Meng D, Yunpeng G-u, Zhenjun L, Yue Q, Gui E. Ma, Kang N. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh. Stem Cell Int. 2015.
70.Jia L, Wei Z, Yu-Feng Z, Xia L. Cell responses and hemocompatibility of g-HA/PLA composites. Sci China Life Sci. 2011; 54: 366–371.
71.Silva J-D, Jesus S, Bernardi N, Colaço M, Borges O. Poly(D,L-Lactic Acid) Nanoparticle Size Reduction Increases Its Immunotoxicity. Frontier Bioeng Biotech. 2019; 7(137).
72.Chen J, Yu M, Guo B, Ma P-X, Yin Z. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J Colloid Interface Sci. 2018; 514: 517–527.
73.Soundararajan A, R-J-M, Dhandapani R, Radhakrishnan J, Manigandan A, Kalyanasundaram S, Sethuraman S, Subramanian A. Surface topography of polylactic acid nanofibrous mats: influence on blood compatibility. J Mater Scie: Mater Med. 2018; 29: 145-169.
74.Ailin Gao, FuLiu n, LixinXue. Preparationandevaluationofheparin-immobilizedpoly(lacticacid) (PLA) membraneforhemodialysis. J Memb Sci. 2014: 390–399.
75.Li J, Liu F, Qin Y, He J, Xiong Z, Deng G, Li Q. A novel natural hirudin facilitated anti-clotting polylactide membrane via hydrogen bonding interaction. J Memb Sci. 2017; (523): 505–514.
76.Craparo E-F, D’Apolito R, Giammona G, Cavallaro G, Tomaiuolo G. Margination of Fluorescent Polylactic Acid–Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure. Molecule. 2017; 22.
77.Wang H, Shi X, Gao A, Lin H, Chen Y, Ye Y, He J, Liu F, Deng G. Heparin free coating on PLA membranes for enhanced hemocompatibility via iCVD. Appl Surf Sci. 2018; 433:869–878.
78.Lv J, Yin X, Zeng Q, Dong W, Liu H, Zhu L. Preparation of carboxymethyl chitosan nanofibers through electrospinning the ball-milled nanopowders with poly (lactic acid) and the blood compatibility of the electrospun NCMC/PLA mats. J Polym Res. 2017; 24(60).
79.Weijie Z, Zhuo C, Sujuan M, Yonggang W, Fei Z, Keyi W, Chenguang Y, Xiuying P, Jianzhong M, Yuli W, Feifan L, Fen R, Yanbei K. Cistanche polysaccharide (CDPS)/polylactic acid (PLA) scaffolds based coaxial electrospinning for vascular tissue engineering. Int J Polym Mater Polym Biomater. 2016; 65(1):38–46.
80.Shao W, He J, Sang F, Wang Q, Chen L, Cui S, Ding B. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Mater Sci Eng C. 2016; 62: 823–834.
81.Shao W, He J, Han Q, Sang F, QianWang, Chen L, Cui S, Ding B. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng C. 2016; 67: 599–610.
82.He Z, Shi Z, Sun W, Ma J, Xia J, Zhang X, Chen W, Huang J. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumor Biol. 2016; 37: 7809–7821.
83.Yan Chen, Lin J, Yuqin Wan, Yanna Fei, Wang H, Gao W. Preparation and Blood Compatibility of Electrospun PLA/Curcumin Composite Membranes. Fiber Polym. 2012;13 (10): 1254-1258.
84.Sharkawi T, Darcos V, Vert M. Poly(DL-lactic acid) film surface modification with heparin for improving hemocompatibility of blood-contacting bioresorbable devices. J Biomed Mater Res. 2011; 98 (1).
85.Koh LB, Rodriguez I, Venkatraman S-S. A novel nanostructured poly(lactic-co-glycolic-acid)–multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies. Acta Biomaterialia. 2009; 5: 3411–3422.
86.Li B-K, Isabel R, Zhou J. Platelet adhesion studies on nanostructured poly(lactic-co-glycolic-acid)–carbon nanotube composite. J Biomed Mater Res A. 2007.
87.Varshosaz J, Jahanian A, Maktoobian M. Montelukast Incorporated Poly(methyl vinyl ether-co-maleic acid)/Poly(lactic-co-glycolic acid) Electrospun Nanofibers for Wound Dressing. Fiber Polym. 2017; 18 (11): 2125-2134.
88.Weijie Z, Zhuo C, Sujuan M, Yonggang W, Fei Z, Keyi W, Chenguang Y, Xiuying P, Jianzhong M, Yuli W, Feifan L, Fenb R, Yanbei K. Cistanche polysaccharide (CDPS)/polylactic acid (PLA) scaffolds based coaxial electrospinning for vascular tissue engineering. Int J Polym Mater Polym Biomater. 2016; 65 (1): 38–46.