Synthesis of silver nanoparticles by Galega officinalis and its hypoglycemic effects in type 1 diabetic rats

Document Type : Research Paper

Authors

1 Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Department of chemistry, Shahid Beheshti University, G. C., Tehran, Iran

Abstract

Objective(s): Diabetes is related with the higher blood levels of liver enzymes and inflammatory factors.  Galega officinalis is used as a medicinal plant for treatment of diabetes traditionally. In this work, silver nanoparticles (Ag-NPs) were synthesized with green method using Galega officinalis extract.
Materials and Methods: The synthesized green Ag-NPs were characterized completely. Intact or diabetic rats receieved intraperitoneal injection of saline or 2/5mg/Kg  green synthesized Ag-NPs. Mean serum levels of glucose,  hepatic enzymes and hematological parameter were determined. Gene expression of tumor necrotic factor alpha (TNF-α) was done by real-time PCR.  
Results: Synthesis of green synthesized Ag-NPs was confirmed by FT-IR, XRD and UV-vis analyses. The FESEM and TEM images showed spherical Ag-NPs with size of 25 nm. The hypoglycemic influence of Ag-NPs using Galega officinalis extract is reported for the first time in this study. Blood concentration of liver enzymes, urea, glucose, white blood cells count and TNF-α mRNA levels in visceral adipose tissue significantly declined in diabetic rats receiving Ag-NPs.
Conclusion: The synthesized Ag-NPs using Galega officinalis extract may improve complication of diabetes via preventing liver hepatocyte damage and reducing inflammatory factors.

Keywords


1.    Chen CHC, Tsai SP, Jhao JY, Jiang WK, Tsao CK, Chang LY. Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: A prospective study of 132,377 adults. Sci Rep. 2017;7(1):4649.
2.     Kany SH, Vollrath JT, Relia B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23):6008.
3.    Prameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010; 20(2):87-103.
4.    Mooney MH, Fogarty S, Stevenson C, Gallager AM, Palit P, Hawley SA, et al. Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice. Br J Pharmacol. 2008;153(8):1669-1677.
5.    Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60(9):1566-1576.
6.    Abtahi-Evari SH, Shokoohi M, Abbasi A, Rajabzade A, Hamed SH, Kalarestaghi H. Protective effect of Galega officinalis extract on streptozotocin-induced kidney damage and biochemical factor in diabetic rats. Crescent J Med Bio Sci. 2017;4(3):108˗114.
7.    Khodadadi S. Administration of Galega officinalis in experimental and clinical investigations; a narrative review. Ann Res Antioxid. 2016;1(1):1˗4.
8.    Abdelghany TM, AL- Rajhi AMH, Al- Aboud MA, Alawlaqi MM, Magdah AG, Helmy EAM, et al. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. Bio Nano Sci. 2017;8(1):5˗16. 
9.    Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2015;8: 265˗275.
10.    Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, et al. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications Environ. Sci Pollut Res. 2018;25(11):10164˗10183.
11.    Singh P, Kim YJ, Yang DCH. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol. 2016;44(8):1949˗1957.
12.    Dxiendzikowsaka K, Krawczyńska A, Oczkowski M, Królikowski T, Brzóska  K, Lnakoff  A et al. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats. Toxicol Appl Pharmacol. 2016;313:35-46.
13.     Ebrahimzadeh MA, Naghizadeh A, Amiri O, Shirzadi-Ahodashti M, Mortazavi-Derazkola S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg Chem. 2020;94:103425.
14.     Ma ZH, Liu J, Liu Y, Zheng X, Tang K. Green synthesis of silver nanoparticles using soluble soybean polysaccharide and their application in antibacterial coatings. Int J Biol Macromol. 2021;166: 567˗577.
15.    Etuk EU. Animals models for studying diabetes mellitus. Agric Biol J N Am. 2010;1(2):130-134.
16.     Mahmoudi F, Mahmoudi F, Haghighat Gollo KH, Amini MM. Biosynthesis of novel silver nanoparticles using Eryngium thyrsoideum Boiss extract and comparison of their antidiabetic activity with chemical synthesized silver nanoparticles in diabetic rats. Biol Trace Elem Res. 2021;199(5):1967-1978
17.    Wei S, Wang Y, Tang Z, Xu H, Wang Z, Yang T, et al. A novel green synthesis of silver nanoparticles by the residues of Chinese herbal medicine and their biological activities. RSC Adv. 2021;11:1411˗1419.
18.    Dakshayani SS, Marulasiddeshwara MB, Sharath Kumar MN, Ramesh G , Raghavendra Kumar P, Devaraja S, et al. Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. Int J Biol Macromol. 2019;131: 787˗797.
19.    Luka CD, Adogal GI, Istifanus G. Phytochemical studies of different fractions of Galega officinalis extract and their effects on some biochemical parameters in alloxan-induced diabetic rats. Eur J Med Plants. 2017;19(1):1˗10.
20.    Hanhineva K, Törrönen R, Bondia-Pons I, Jenna Pekkinen J, Kolehmainen M, Mykkänen H, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010; 11(4):1365˗1402.
21.     Rasouli H, Hosseini SM, Adibi H, Khodarahmi R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017;8(5):1942˗1954.
22.    Yang L, Kuang H, Zhang W, Aguilar ZP, Wei H, Xu H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci Rep. 2017;7(1):2˗12.
23.     Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci. 2011;73(11):1417˗1423.
24.     Akash MS, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525˗531.
25.    Demirtas L, Degirmenci H, Akbas EM, Ozcicek A, Timuroglu A, Gurel A, et al. Association of hematological indices with diabetes impaired glucose regulation and microvascular complications of diabetes. Int J Clin Exp Med. 2015; 8(7): 11420˗11427.
26.     Yeom E, Byeon H, Lee S. Effect of diabetic duration on hemorheological properties and platelet aggregation in streptozotocin-induced diabetic rats. Sci Rep. 2016;6: 1˗11.
27.    De Jong WH, Van Der Ven LT, Sleijffers A, Park MVDZ, Jansen EHJM, Loveren HV, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013; 34(33):8333˗8343.
28.    Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45˗63.
29.    Devaraj S, Dasu MR, Ishwarla J. Diabetes is a pro-inflammatory state: A translational perspective. Expert. Rev Endocrinol Metab. 2010;5(1):19˗28.
30.    Wong KKY, Cheung SOF, Huang L, Niu J, Tao CH, Ho CM, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem Med Chem. 2009; 4(7):1129˗1135.
31.    Zhang Z, Lui VC, Chen Y, Lok CN, Wong KK. Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing. Sci Rep. 2020;10(1):6338.