Investigation and comparison of laser and ultrasound effects on the temperature increasing of the solutions containing graphene oxide nanoparticles for thermal treatment of osteosarcoma cancer cells

Document Type : Research Paper

Authors

1 Department of Biomedical Engineering, Meybod University, PO Box 89616-99557, Meybod, Iran

2 Department of Biology, Taft Payame Noor University, Yazd, Iran

3 Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

4 Department of Computer Engineering, Meybod University, Meybod, Iran

5 Department of Nursing, Shirvan Faculty of Nursing, North Khorasan University of Medical Sciences, Bojnūrd, Iran

6 Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnūrd, Iran

7 Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnūrd, Iran

Abstract

Objective(s): The waves of ultrasound and laser in the presence of nanoparticles are introduced as desirable candidates for the thermal treatment of cancer due to having fewer side effects, more speed, and superior treatment efficiency. Here, 2D Graphene oxide nanoparticle is used as a thermal nano-convertor for increasing the yield of thermal cancer therapy.
Materials and Methods: The temperature of GO (in 0.2 and 0.4 mg/ml concentrations) and deionized water regarding heater, bath sonicate, probe sonicate (at a power range of 2-3.5 W), and laser properties at 808 nm with continuous wave (at a power of 0-2 W) in 10 min are investigated. Based on the experimental results, the effect of laser and ultrasound radiation on the temperature is simulated using a data mining approach.
Results: Experimental and simulation results show that GO nanoparticle in this form is unsuitable for converting ultrasound waves into heat. But it is a strong absorber for electromagnetic waves at 808 nm and can raise the temperature to 85 °C. The results indicate that the laser + GO enhances the mortality percentage and treatment yield of MG63 cancerous cells by up to 85%. Also, GO uptake is analyzed by fluorescent microscopic images.
Conclusion: This analysis confirmed that GO is important when laser radiation is used but not when Ultrasound is employed. Also, GO is an excellent photothermal nanoparticle for localized thermal therapy of osteosarcoma cancer cells by laser at 808 nm with low side effects.

Keywords


1.    Litman T, Druley TE, Stein WD, Bates SE. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001;58(7):931-959. 
2.    Sadeghi M, Kashanian S, Naghib SM, Askari E, Haghiralsadat F, Tofighi D. A highly sensitive nanobiosensor based on aptamer-conjugated graphene-decorated rhodium nanoparticles for detection of HER2-positive circulating tumor cells. Nano Rev. 2022;11(1):793-810.
3.    Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm. 2021;604:120733.
4.    Varon LAB, Orlande HRB, Eliçabe GE. Combined parameter and state estimation problem in a complex domain: RF hyperthermia treatment using nanoparticles. J Phys Conf Ser. 2016;745(3):032014. 
5.    Motlagh NSH, Parvin P, Mirzaie ZH, Karimi R, Sanderson JH, Atyabi F. Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO + DOX. Biomed Opt Express. 2020;11(7):3783-3794. 
6.    You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 2012;72(18):4777-4786. 
7.    Wu H, Lu C, Chen M. Evaluation of minimally invasive laser ablation in children with osteoid osteoma. Oncol Lett. 2017;13(1):155-158. 
8.    Rashidi A, Omidi M, Choolaei M, Nazarzadeh M, Yadegari A, Haghierosadat F, et al. Electromechanical properties of vertically aligned carbon nanotube. Adv Mater Res. 2013;705:332-346.
9.    Wood AK, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med Biol. 2015;41(4):905-928. 
10.    Tu X, Ma Y, Cao Y, Huang J, Zhang M, Zhang Z. PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy. J Mater Chem B. 2014;2(15):2184-2192. 
11.    Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release. 2021;333: 391-417.
12.    Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 2012;31(4):623-634. 
13.    Yoshizawa S, Takagi R, Umemura S-i. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation. Appl Sci. 2017;7(3):288. 
14.    Shanei A, Tavakoli MB, Salehi H, Ebrahimi-Fard A. Evaluating the effects of ultrasound waves on MCF-7 cells in the presence of ag nanoparticles. J Isfahan Med Sch. 2016;34(389):763-768.
15.    Legay M, Gondrexon N, Le Person S, Boldo P, Bontemps A. Enhancement of heat transfer by ultrasound: review and recent advances. Int J Chem Eng. 2011;2011:670108. 
16.    Li JL, Hou XL, Bao HC, Sun L, Tang B, Wang JF, et al. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. J Biomed Mater Res A. 2014;102(7):2181-2188. 
17.    Johari P, Shenoy VB. Modulating Optical Properties of Graphene Oxide: Role of Prominent Functional Groups. ACS Nano. 2011;5(9):7640-7647. 
18.    Omidi M, Malakoutian M, Choolaei M, Oroojalian F, Haghiralsadat F, Yazdian F. A Label-Free detection of biomolecules using micromechanical biosensors. Chin Phys Lett. 2013;30(6):068701.
19.    Karimi MA, Dadmehr M, Hosseini M, Korouzhdehi B, Oroojalian F. Sensitive detection of methylated DNA and methyltransferase activity based on the lighting up of FAM-labeled DNA quenched fluorescence by gold nanoparticles. RSC advances. 2019;9(21):12063-12069.
20.    Yaghoubi F, Naghib SM, Motlagh NSH, Haghiralsadat F, Jaliani HZ, Tofighi D, et al. Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy. Nano Rev. 2021;10(1):1838-1852.
21.    Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318-3323. 
22.    Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, et al. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. J Am Chem Soc. 2011;133(17):6825-6831. 
23.    Matteini P, Tatini F, Cavigli L, Ottaviano S, Ghini G, Pini R. Graphene as a photothermal switch for controlled drug release. Nanoscale. 2014;6(14):7947-7953. 
24.    Marchal C, Bey P, Metz R, Gaulard ML, Robert J. Treatment of superficial human cancerous nodules by local ultrasound hyperthermia. Br J Cancer Suppl. 1982;5:243-245. 
25.    Gelet A, Chapelon JY, Bouvier R, Pangaud C, Lasne Y. Local control of prostate cancer by transrectal high intensity focused ultrasound therapy: preliminary results. J Urol. 1999;161(1):156-162. 
26.    Kaczmarek K, Hornowski T, Dobosz B, Józefczak A. Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia. Materials (Basel). 2018;11(9). Epub 20180904. 
27.    Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran MB. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Phys E: Low-Dimens Syst Nanostructures. 2016;81:308-314. 
28.    Rahimizadeh M, Eshghi H, Shiri A, Ghadamyari Z, Matin MM, Oroojalian F, et al. Fe (HSO 4) 3 as an efficient catalyst for diazotization and diazo coupling reactions. J Korean Chem Soc. 2012;56(6):716-719.
29.    Chen Y-W, Liu T-Y, Chang P-H, Hsu P-H, Liu H-L, Lin H-C, et al. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale. 2016;8(25):12648-12657. 
30.    yaghoubi f, Hosseini Motlagh NS, moradi a, Haghiralsadat f. Carboxylated Graphene Oxide as a Nanocarrier for Drug Delivery of Quercetin as an Effective Anticancer Agent Iran Biomed J. 2022;26(4):324-329.
31.    Nia AH, Behnam B, Taghavi S, Oroojalian F, Eshghi H, Shier WT, et al. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate–polyethylenimine conjugates as non-viral gene carriers. Med Chem Comm. 2017;8(2):364-375.
32.    Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876-10877. 
33.    Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG. Femtosecond pump–probe spectroscopy of graphene oxide in water. J Phys D: Appl Physics. 2014;47(9):094008. 
34.    Liaros N, Aloukos P, Kolokithas-Ntoukas A, Bakandritsos A, Szabo T, Zboril R, et al. Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J Phys Chem C. 2013;117(13):6842-6850. 
35.    Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J Phys Chem B. 2006;110(17):8535-8539.
36.    Fatemi Bushehri SMM, Zarchi MS. An expert model for self-care problems classification using probabilistic neural network and feature selection approach. Appl Soft Comput. 2019;82:105545. 
37.    Sordillo LA, Pu Y, Pratavieira S, Budansky Y, Alfano RR. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J Biomed Opt. 2014;19(5):056004.