Synthesis and in vitro characterization of PCL-PEG-HA/FeCo magnetic nanoparticles encapsulating curcumin and 5-FU

Document Type : Research Paper

Authors

1 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran

3 Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran

10.22038/nmj.2024.76219.1857

Abstract

Objective(s): Colorectal cancer is the second deadly cancer for men and women worldwide. Depending on the pathological attributes of the tumor, there are numerous therapeutic options for colorectal cancer treatment. Chemotherapy is one of the main methods, however, due to the low solubility and short half-life of chemotherapy drugs, this treatment method has limitations. 5-Fu and curcumin are important drugs for the treatment of colorectal cancer. One of the primary resolutions is the application of bioanalytical techniques, which involve the utilization of chemotherapy agents in conjunction with nanoparticles, thereby facilitating the directed transportation of the therapeutic substance to malignant cells. 
Materials and Methods: In this study, Polycaprolactone- Polyethylene glycol- Hyaluronic acid (PCL-PEG-HA) copolymers and magnetic nanoparticle iron-cobalt (FeCo) were synthesized to deliver Curcumin (CU), 5-Fluorouracil (5-Fu) and the combination to HCT116 colorectal cancer cells. To control the release of CU and 5-FU and in vivo tumor targeting, PCL-PEG-HA/FeCo were synthesized and then characterized for the morphological characteristics, shape, and magnetic properties of the nanoparticles, drug retention efficiency, and release pattern in two acidic and neutral environments. 
Results: Our results demonstrated that the release profile of CU and 5-FU from the nanoparticles in acidic conditions was more than the drug release in neutral conditions. In acidic conditions, due to faster degradation of nanoparticles, drugs are released faster. Moreover, these nanoparticles have high biocompatibility and potential in transporting CU and 5-FU drugs to HCT116 cells. The IC50 of co-delivery of CU and 5-FU was 65.42 mg/L, while, the IC50 value of drugs coated with nanoparticles (PCL-PEG-HA/FeCo/5-FU/Curcumin) was 72.26. Otherwise, utilizing nanoparticles can increase the amount of apoptosis compared to control and free 5-Fu and Curcumin. 
Conclusion: In conclusion, PCL-PEG-HA/FeCo/5-FU/Curcumin nanoparticles can be an efficient solution in targeted drug delivery to colorectal cancer cells and reducing the side effects of these drugs on normal cells.

Keywords


1. Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers. 2021;13(9):2025.
2. Levy MH, Back A, Benedetti C, Billings JA, Block S, Boston B, et al. NCCN clinical practice guidelines in oncology: palliative care. J Natl Compr Canc Netw. 2009;7(4):436-473.
3. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken J, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386-1422.
4. Chibaudel B, Tournigand C, Bonnetain F, Richa H, Benetkiewicz M, André T, de Gramont A. Therapeutic strategy in unresectable metastatic colorectal cancer: an updated review. Ther Adv Med Oncol. 2015;7(3):153-169.
5. Wen Y, Chen X, Zhu X, Gong Y, Yuan G, Qin X, Liu J. Photothermal-chemotherapy integrated nanoparticles with tumor microenvironment response enhanced the induction of immunogenic cell death for colorectal cancer efficient treatment. ACS Appl Mater Interfaces. 2019;11(46):43393-408.
6. Kalyan A, Kircher S, Shah H, Mulcahy M, Benson A. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 2018;9(1):160.
7. Papadimitriou M, Papadimitriou CA. Antiangiogenic tyrosine kinase inhibitors in metastatic colorectal cancer: focusing on regorafenib. Anticancer Res. 2021;41(2):567-582.
8. Dasineh S, Akbarian M, Ebrahimi HA, Behbudi G. Tacrolimus-loaded chitosan-coated nanostructured lipid carriers: preparation, optimization and physicochemical characterization. Appl Nanosci. 2021;11:1169-1181.
9. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Arch Pharmacol Ther. 2020;206:107447.
10. Cho Y-H, Ro EJ, Yoon J-S, Mizutani T, Kang D-W, Park J-C, et al. 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat Commun. 2020;11(1):5321.
11. Christensen S, Van der Roest B, Besselink N, Janssen R, Boymans S, Martens JW, et al. 5-Fluorouracil treatment induces characteristic T> G mutations in human cancer. Nat Commun. 2019;10(1):4571.
12. Chionh F, Lau D, Yeung Y, Price T, Tebbutt N. Oral versus intravenous fluoropyrimidines for colorectal cancer. Cochrane Database Syst Rev. 2017; 2017(7): CD008398.
13. Lin SR, Chang CH, Hsu CF, Tsai MJ, Cheng H, Leong MK, et al. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol. 2020;177(6):1409-1423.
14. Xu Z, Hu C, Chen S, Zhang C, Yu J, Wang X, et al. Apatinib enhances chemosensitivity of gastric cancer to paclitaxel and 5-fluorouracil. Cancer Manag Res. 2019:4905-4915.
15. Wang J, Qiao Y, Sun M, Sun H, Xie F, Chang H, et al. FTO promotes colorectal cancer progression and chemotherapy resistance via demethylating G6PD/PARP1. J Clin Transl Sci. 2022;12(3): e772.
16. Karthika C, Hari B, Rahman MH, Akter R, Najda A, Albadrani GM, et al. Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed Pharmacother. 2021;140:111704.
17. Song L, Hao Y, Wang C, Han Y, Zhu Y, Feng L, et al. Liposomal oxaliplatin prodrugs loaded with metformin potentiate immunotherapy for colorectal cancer. J Control Release. 2022;350:922-932.
18. Xiao Q, Xiao J, Liu J, Liu J, Shu G, Yin G. Metformin suppresses the growth of colorectal cancer by targeting INHBA to inhibit TGF-β/PI3K/AKT signaling transduction. Cell Death Dis. 2022;13(3):202.
19. Davis SL, Hartman SJ, Bagby SM, Schlaepfer M, Yacob BW, Tse T, et al. ATM kinase inhibitor AZD0156 in combination with irinotecan and 5-fluorouracil in preclinical models of colorectal cancer. BMC cancer. 2022;22(1):1107.
20. Patil SS, Bhasarkar S, Rathod VK. Extraction of curcuminoids from Curcuma longa: comparative study between batch extraction and novel three phase partitioning. Prep Biochem Biotechnol. 2019;49(4):407-418.
21. Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol. 2020;11:1021.
22. Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-derived natural products in cancer research: extraction, mechanism of action, and drug formulation. Molecules. 2020;25(22):5319.
23. Su P, Yang Y, Wang G, Chen X, Ju Y. Curcumin attenuates resistance to irinotecan via induction of apoptosis of cancer stem cells in chemoresistant colon cancer cells. Int J Oncol Res. 2018;53(3):1343-1353.
24. Ojo OA, Adeyemo TR, Rotimi D, Batiha GE-S, Mostafa-Hedeab G, Iyobhebhe ME, et al. Anticancer properties of curcumin against colorectal cancer: a review. Front Oncol. 2022;12:881641.
25. Weng W, Goel A, editors. Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol; 2022: Elsevier.
26. Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, et al. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer. J Cell Physiol. 2018;233(10):6785-6798.
27. Yaghoubi H, Eskanlou H, Danandeh Baghrabad M, Farazi N, Nedaee Shakarab B. Preparation and evaluation of anti-cancer effects of targeted polymer nano particles containing paclitaxel and siRNA in MCF-7 breast cancer cell line. Cell Mol Biol. 2023.
28. Sukumaran S, Neelakandan M, Shaji N, Prasad P, Yadunath V. Magnetic nanoparticles: Synthesis and potential biological applications. JSM Nanotechnology & Nanomedicine. 2018;6(2):1068.
29. Abdolmaleki A, Khudhur ZO, Smail SW, Asadi A, Amani A. FeCo-Chitosan/DNA nanoparticles for gene transfer to MCF-7 breast cancer cells: preparation and characterization. Breast Cancer (Auckl). 2021;13(4):245-257.
30. Sami El-banna F, Mahfouz ME, Leporatti S, El-Kemary M, AN Hanafy N. Chitosan as a natural copolymer with unique properties for the development of hydrogels. World Appl Sci J. 2019;9(11):2193.
31. Archer E, Torretti M, Madbouly S. Biodegradable polycaprolactone (PCL) based polymer and composites. Phys Sci Rev. 2021(0):000010151520200074.
32. Afrouz M, Ahmadi-Nouraldinvand F, Ajirlu YY, Arabnejad F, Eskanlou H, Yaghoubi H. Preparation and characterization of PLA-PEG/Chitosan-FA/DNA for gene transfer to MCF-7 cells. Med Drug Discov. 2022;15:100138.
33. Guastaferro M, Baldino L, Cardea S, Reverchon E. Supercritical processing of PCL and PCL-PEG blends to produce improved PCL-based porous scaffolds. J Supercrit Fluids. 2022;186:105611.
34. Afrouz M, Ahmadi-Nouraldinvand F, Amani A, Zahedian H, Elias SG, Arabnejad F, et al. Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/Fe3O4-PCL/DNA micelles for gene delivery into MCF-7 cells. J Drug Deliv Sci Technol. 2023;79:104016.
35. Fu C-P, Cai X-Y, Chen S-L, Yu H-W, Fang Y, Feng X-C, et al. Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery. Polymers. 2023;15(10):2317.
36. Trang NTT, Chinh NT, Giang NV, Thanh DTM, Lam TD, Thu LV, et al. Hydrolysis of green nanocomposites of poly (lactic acid)(PLA), chitosan (CS) and polyethylene glycol (PEG) in acid solution. Green Processing and Synthesis. 2016;5(5):443-449.
37. Prabha G, Raj V. Preparation and characterization of chitosan—Polyethylene glycol‐polyvinylpyrrolidone‐coated superparamagnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study. J Biomed Mater Res B Appl Biomater. 2016;104(4):808-816.
38. Pietkiewicz S, Schmidt JH, Lavrik IN. Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. J Immunol Methods. 2015;423:99-103.
39. Pérez-Garijo A, Fuchs Y, Steller H. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. Elife. 2013;2:e01004.
40. Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022;7(1):196.
41. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908-931.
42. Nam S-H, An Y-J. Size-and shape-dependent toxicity of silver nanomaterials in green alga Chlorococcum infusionum. Ecotoxicol Environ Saf. 2019;168:388-393.
43. Mendes RG, Koch B, Bachmatiuk A, El-Gendy AA, Krupskaya Y, Springer A, et al. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochim Biophys Acta Gen Subj. 2014;1840(1):160-169.
44. Mosquera J, García I, Liz-Marzán LM. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc Chem Res. 2018;51(9):2305-2313.
45. Bai X, Wang S, Yan X, Zhou H, Zhan J, Liu S, et al. Regulation of cell uptake and cytotoxicity by nanoparticle core under the controlled shape, size, and surface chemistries. ACS nano. 2019;14(1):289-302.
46. Shieh M-J, Peng C-L, Lou P-J, Chiu C-H, Tsai T-Y, Hsu C-Y, et al. Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates. J Control Release. 2008;129(3):200-206.
47. Alam N, Koul M, Mintoo MJ, Khare V, Gupta R, Rawat N, et al. Development and characterization of hyaluronic acid modified PLGA based nanoparticles for improved efficacy of cisplatin in solid tumor. Biomed Pharmacother. 2017;95:856-864.
48. Serri C, Quagliariello V, Iaffaioli RV, Fusco S, Botti G, Mayol L, Biondi M. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid‐decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. J Cell Physiol. 2019;234(4):4959-4969.
49. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657-3666.
50. Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly (ethylene glycol)–poly (d, l-lactide) block copolymer micelles with modulated surface charge. J Control Release. 2001;77(1-2):27-38.
51. Juliano Rá, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun. 1975;63(3):651-658.
52. Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol. 2020;82:103-126.
53. Shen C, Wang J, Wu X, Xu J, Hu J, Reheman A. Drug release behavior of poly (amino acid) s drug-loaded nanoparticles with pH-responsive behavior. J Drug Deliv Sci Technol. 2023;87:104827.
54. Ting C-W, Chou Y-H, Huang S-Y, Chiang W-H. Indocyanine green-carrying polymeric nanoparticles with acid-triggered detachable PEG coating and drug release for boosting cancer photothermal therapy. Colloids Surf B Biointerfaces. 2021;208:112048.
55. Li X, Liu P. Acid-triggered degradable polyprodrug with drug as unique repeating unit for long-acting drug delivery with minimal leakage. Mater Sci Eng C Mater Biol Appl. 2021;128:112317.
56. Song S, Shen H, Wang Y, Chu X, Xie J, Zhou N, Shen J. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces. 2020;185:110596.
57. Lv S, Tang Z, Li M, Lin J, Song W, Liu H, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials. 2014;35(23):6118-6129.
58. Amani A, Begdelo JM, Yaghoubi H, Motallebinia S. Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. J Drug Deliv Sci Technol. 2019;49:534-546.
59. Montazeri M, Sadeghizadeh M, Pilehvar-Soltanahmadi Y, Zarghami F, Khodi S, Mohaghegh M, et al. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int J Pharm. 2016;509(1-2):244-254.
60. Ismail NI, Othman I, Abas F, H. Lajis N, Naidu R. Mechanism of apoptosis induced by curcumin in colorectal cancer. Int J Mol Sci. 2019;20(10):2454.
61. Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, Alipour S, Farajzadeh R, Javidfar S, Zarghami N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr Cancer. 2017;69(8):1290-1299.
62. Johdi NA, Sukor NF. Colorectal cancer immunotherapy: options and strategies. Front Immunol. 2020;11:1624.
63. Aghabozorgi AS, Sarabi MM, Jafarzadeh-Esfehani R, Koochakkhani S, Hassanzadeh M, Kavousipour S, Eftekhar E. Molecular determinants of response to 5-fluorouracil-based chemotherapy in colorectal cancer: The undisputable role of micro-ribonucleic acids. World J Gastrointest Oncol. 2020;12(9):942.
64. Tecza K, Pamula-Pilat J, Lanuszewska J, Butkiewicz D, Grzybowska E. Pharmacogenetics of toxicity of 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget. 2018;9(10):9114.
65. Verma H, Narendra G, Raju B, Singh PK, Silakari O. Dihydropyrimidine dehydrogenase-mediated resistance to 5-fluorouracil: Mechanistic investigation and solution. ACS Pharmacol Transl Sci. 2022;5(11):1017-1033.
66. Negrei C, Hudita A, Ginghina O, Galateanu B, Voicu SN, Stan M, et al. Colon cancer cells gene expression signature as response to 5-fluorouracil, oxaliplatin, and folinic acid treatment. Front Pharmacol. 2016;7:172.
67. Puerta-García E, Urbano-Pérez D, Carrasco-Campos MI, Pérez-Ramírez C, Segura-Pérez A, Cañadas-Garre M. Effect of DPYD, MTHFR, ABCB1, XRCC1, ERCC1 and GSTP1 on chemotherapy related toxicity in colorectal carcinoma. Surg Oncol. 2020;35:388-398.
68. Abbasian MH, Ansarinejad N, Abbasi B, Iravani M, Ramim T, Hamedi F, Ardekani AM. The role of dihydropyrimidine dehydrogenase and thymidylate synthase polymorphisms in fluoropyrimidine-based cancer chemotherapy in an Iranian population. Avicenna J Med Biotechnol. 2020;12(3):157.
69. Cevik M, Namal E, Sener ND, Koksal UI, Cagatay P, Deliorman G, et al. Investigation of DPYD, MTHFR and TYMS polymorphisms on 5-fluorouracil related toxicities in colorectal cancer. J Pers Med. 2022;19(5):435-444.
70. Zheng X, Yang X, Lin J, Song F, Shao Y. Low curcumin concentration enhances the anticancer effect of 5-fluorouracil against colorectal cancer. Phytomedicine. 2021;85:153547.
71. Ni R, Duan D, Li B, Li Z, Li L, Ming Y, et al. Dual-modified PCL-PEG nanoparticles for improved targeting and therapeutic efficacy of docetaxel against colorectal cancer. Pharm Dev Technol. 2021;26(8):910-921.
72. Xiao B, Han MK, Viennois E, Wang L, Zhang M, Si X, Merlin D. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale. 2015;7(42):17745-17755.
73. Sadeghi-Abandansari H, Pakian S, Nabid M-R, Ebrahimi M, Rezalotfi A. Local co-delivery of 5-fluorouracil and curcumin using Schiff’s base cross-linked injectable hydrogels for colorectal cancer combination therapy. Eur Polym J. 2021;157:110646.
74. Obeng E. Apoptosis (programmed cell death) and its signals-A review. Braz J Biol. 2020;81:1133-1143.
75. Xiang L, He B, Liu Q, Hu D, Liao W, Li R, et al. Antitumor effects of curcumin on the proliferation, migration and apoptosis of human colorectal carcinoma HCT‑116 cells. Oncol Rep. 2020;44(5):1997-2008.
76. Szarynska M, Olejniczak A, Wierzbicki P, Kobiela J, Laski D, Sledzinski Z, et al. FasR and FasL in colorectal cancer. Int J Oncol. 2017;51(3):975-986.
77. Çalıbaşı Koçal G, Pakdemirli A, Bayrak S, Ozupek N, Sever T, Başbınar Y, et al. Curcumin effects on cell proliferation, angiogenesis and metastasis in colorectal cancer. J BUON. 2019;24(4).
78. Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5‐Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci. 2020;111(9):3142-3154.
79. Arneth B. Tumor microenvironment. Medicina. 2019;56(1):15.
80. Thakkar S, Sharma D, Kalia K, Tekade RK. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater. 2020;101:43-68.
81. Bhattacharyya S, Md Sakib Hossain D, Mohanty S, Sankar Sen G, Chattopadhyay S, Banerjee S, et al. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. J Cell Mol Immunol. 2010;7(4):306-315.