Equisetum ramosissimum desf-assisted green synthesis of cerium oxide nanoparticles: Characterization and antimicrobial potential against cariogenic Streptococcus mutans

Document Type : Research Paper

Authors

Pedodontic,Orthodontic , Preventive department, college of dentistry, Hawler Medical University, Erbil 44001, Iraq

10.22038/nmj.2024.77376.1886

Abstract

Objective(s): This study explores the biosynthesis of cerium oxide nanoparticles using aqueous extract of Equisetum ramosissimum Desf as both a reducing and stabilizing agent and evaluates its antibacterial activity against cariogenic streptococcus mutans.
Materials and Methods: Cerium oxide nanoparticles were synthesized and characterized using UV-VIS, FTIR, XRD, FESEM, EDX, DLS, and Zeta potential analyses. Antibacterial activity against S. mutans was evaluated via the agar well diffusion method.
Results: Optical analysis revealed an absorption peak within the 307–314 nm range, suggesting a bandgap value of 3.04–3.37 eV. FTIR analysis confirmed Ce-O stretching vibrations and bonds with phytochemicals from the E.ramosissimum Desf extract on the nanoparticle surfaces. XRD showed a cubic fluorite structure with a crystalline size of 5.99–11.74 nm. FESEM imaging depicted uniform, nearly spherical nanoparticles with estimated sizes ranging from 22 to 31 nm. The EDX spectrum indicated the presence of cerium and oxygen signals, affirming the purity of the fabricated nanoparticles. DLS results corroborated the average nanoparticle size (28.11–54.61 nm), in agreement with FESEM findings and zeta potential values (-11.4 to 29.2 mV) indicating moderate stability of nanoparticles. Antibacterial assays showed significant inhibition zones (20–32 mm) against S. mutans.
Conclusion: The green-synthesized CeO2-NPs exhibit promising antimicrobial efficacy against S. mutans, suggesting their potential for dental applications. Furthermore, employing plant extract for cerium salt reduction presents a promising avenue for reducing the environmental impact associated with chemical synthesis.
 

Keywords


1. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005; 83(9):661-669
2.    Plonka KA, Pukallus ML, Barnett AG, Walsh LJ, Holcombe TH, Seow WK. Mutans streptococci and lactobacilli colonization in predentate children from the neonatal period to seven months of age. Caries Res. 2012;46(3):213-220.
3.    Arthur RA, Cury AA, Graner RO, Rosalen PL, Vale GC, Paes Leme AF, et al. Genotypic and phenotypic analysis of S. mutans isolated from dental biofilms formed in vivo under high cariogenic conditions. Braz Dent J. 2011;22(4):267-274.
4.    Aidara AW, Bourgeois D.Prevalence of dental caries: national pilot study comparing the severity of decay (CAO) vs ICDAS index in Senegal. Odontostomatol Trop. 2014;37(145):53-63.
5.    Al-Darwish M, El Ansari W, Bener A. Prevalence of dental caries among 12-14 year old children in Qatar. Saudi Dent J. 2014;26(3):115-125.
6.    Ajami BM, Hosseinzade H, Fazlibazaz BS, Velayatipour H. Evaluation of the antimicrobial activity of aqueous and alcoholic extracts of saffron stigma on oral pathogenic microbes (Streptococcus mutans, Lactobacillus, Candida
albicans). Avicenna J Phytomed. 2015;5:7.
7.    Naqvi SZ, Kiran U, Ali MI, Jamal A, Hameed A, Ahmed S, Ali N. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomedicine. 2013; 8:3187-3195. 
8.    Abou Neel EA, Bozec L, Perez RA, Kim HW, Knowles JC. Nanotechnology in dentistry: prevention, diagnosis, and therapy. Int J Nanomedicine. 2015;10:6371-6394.
9.    Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227-1249.
10.    Subhan MA. Antibacterial property of metal oxide-based nanomaterials. Nanotoxicity. 2020 :283-300.
11.    I ST, Pitchiah S, Suresh V, Ramasamy P. Synthesis of zinc oxide nanoparticles from aqueous extract of Avicennia marina mangrove leaves and their antibacterial activities against oral pathogens. Cureus. 2023;15(10):47627.
12.    Ramya G, Rajasekar A. Enhanced antibacterial effect of titanium dioxide nanoparticles mediated grape seed extract on oral pathogens-Streptococcus mutans and lactobacillus. J Evol Med Dent Sci. 2021;10(22):1656-1662
13.    Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab J Chem. 2019;12(2):168-180.
14.    Rajagopal S, Sugumaran S. The Antibacterial Effectiveness of Citrullus lanatus-Mediated Stannous Nanoparticles on Streptococcus mutans. Cureus. 2023;15(9):45504
15.    Cheisson T, Kersey KD, Mahieu N, McSkimming A, Gau MR, Carroll PJ ,et al. Multiple Bonding in Lanthanides and Actinides: Direct Comparison of Covalency in Thorium(IV)- and Cerium(IV)-Imido Complexes. J Am Chem Soc. 2019;141(23):9185-9190.
16.    Jairam LS, Chandrashekar A, Prabhu TN, Kotha SB, Girish M, Devraj IM, et al. A review on biomedical and dental applications of cerium oxide nanoparticles―Unearthing
the potential of this rare earth metal. Journal of Rare Earths. 2023;41(11): 1645-1661.
17.    Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015; 44(16):5778-5792.
18.    Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology. 2018; 16(1):84. 
19.    Shafey AME. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis. 2020;9(1):304-339.
20.    Altundag E, Ozturk M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey.Procedia Soc Behav Sci. 2011;19:756-777.
21.    Jain AD. Jain S, Shrivastava. A short review on pharmacological activity of Equisetum ramosissimum. Asian J Pharm Clin Res. 2016; 5:1 8.
22.    Boeing T, Tafarelo Moreno KG, Gasparotto Junior A, Mota da Silva L, de Souza P. Phytochemistry and Pharmacology of the Genus Equisetum (Equisetaceae): A Narrative Review of the Species with Therapeutic Potential for Kidney Diseases. Evid Based Complement Alternat Med. 2021; 2021:6658434. 
23.    Ismail AM, Ouaid T, Al-Amery M, Maulood B, Serson W. A preliminary study of phytochemicals in Equisetum arvense & E. ramosissimum (Equisetaceae) extracts from Northern Iraq. Fern Gaz. 2020; 21(3):115-121.
24.    Savaya NSA, Issa RA, Talib WH. In vitro evaluation of the antioxidant, anti-Propioni bacterium acne and antityrosinase effects of Equisetum ramosissimum (Jordanian horsetail). Trop J Pharm Res.  2020;19(10):2147-2152.
25.    Sureshkumar J, Amalraj S, Murugan R, Tamilselvan A, Krupa J, Sriramavaratharajan V, et al. Chemical profiling and antioxidant activity of Equisetum ramosissimum Desf. stem extract, a potential traditional medicinal plant for urinary tract infections. Futur J Pharm Sci.  2021;7:1-11.
26.    Harborne A. Phytochemical methods a guide to modern techniques of plant analysis: springer science & business media; 1998.
27.    Malleshappa J, Nagabhushana H, Sharma SC, Vidya YS, Anantharaju KS, Prashantha SC, et al. Leucas aspera mediated multifunctional CeO2 nanoparticles: Structural, photoluminescent, photocatalytic and antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 149:452-462. 
28.    Elahi B, Mirzaee M, Darroudi M, Oskuee RK, Sadri K, Amiri MS. Preparation of cerium oxide nanoparticles in Salvia Macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities. Ceram Int. 2019; 45(4):4790-4797.
29.    Muthuvel A, Jothibas M, Manoharan C, Jayakumar SJ. Synthesis of CeO 2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. Res Chem Intermed. 2020; 46:2705-2729.
30.    Miri A, Beiki H, Najafidoust A, Khatami M, Sarani M. Cerium oxide nanoparticles: green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess Biosyst Eng. 2021; 44(9):1891-1899.
31.    Gu H, Soucek MD. Preparation and characterization of monodisperse cerium oxide nanoparticles in hydrocarbon solvents. Chem. Mater. 2007; 19(5):1103-1110.
32.    Altaf M, Manoharadas S, Zeyad MT. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc Res Tech. 2021; 84(8):1638-1648. 
33.    Paswan SK, Kumari S, Kar M, Singh A, Pathak H, Borah J, et al. Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J Phys Chem Solids. 2021; 151:109928.
34.    Ahmed HE, Iqbal Y, Aziz MH, Atif M, Batool Z, Hanif A, et al. Green Synthesis of CeO2 Nanoparticles from the Abelmoschus esculentus Extract: Evaluation of Antioxidant, Anticancer, Antibacterial, and Wound-Healing Activities. Molecules. 2021; 26(15):4659.
35.    Jain A, Shrivastava S. Extraction, isolation and characterization of bioactive components derived from whole plant of equisetum ramosissimum desf. J Adv Sci Res. 2020; 11(3):97-102.
36.    Telange DR, Patil AT, Tatode A, Bhoyar B. Development and Validation of UV Spectrophotometric Method for the Estimation of Kaempferol in Kaempferol: Hydrogenated Soy PhosphatidylCholine (HSPC) Complex. Pharm Methods. 2014; 5(1):34-38. 
37.    Aleixandre-Tudo JL, Du Toit W. The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking. Frontiers and new trends in the science of fermented food and beverages. 2018:200-204.
38.    Aguayo-Morales H, Sierra-Rivera CA, Claudio-Rizo JA, Cobos-Puc LE. horsetail (equisetum hyemale) extract accelerates wound healing in diabetic rats by modulating IL-10 and MCP-1 release and collagen synthesis. Pharmaceuticals. 2023; 16(4):514.
39.    Kar S, Patel C, Santra S. Direct room temperature synthesis of valence state engineered ultra-small ceria nanoparticles: investigation on the role of ethylenediamine as a capping agent. J. Phys. Chem. C. 2009; 113(12):4862-4867.
40.    Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials. 2011; 32(28):6745-6753. 
41.    Emsley J. Nature’s building blocks: an AZ guide to the elements: Oxford University Press, USA; 2011.
42.    Miri A, Sarani M. Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram Int. 2018; 44(11):12642-12647.
43.    Korotkova AM, Borisovna PO, Aleksandrovna GI, Bagdasarovna KD, Vladimirovich BD, Vladimirovich KD, et al. Green synthesis of cerium oxide particles in water extracts Petroselinum crispum. ISRN Nanomater. 2019;4(3):176-1790.
44.    Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Materials Technology. 2022;37(8):555-568.
45.    Yulizar Y, Juliyanto S, Apriandanu DOB, Surya RM. Novel sol-gel synthesis of CeO2 nanoparticles using Morinda citrifolia L. fruit extracts: Structural and optical analysis. J Mol Struct. 2021; 1231:129904.
46.    Mahabadi AG, Mirzakhani A, Azizi A, Chavoshi S, Khaghani S. Extracts of Pelargonium hortorum: A natural and efficient fluid for fast and eco-friendly biosynthesis of CeO2 nanoparticles for antioxidant and photocatalytic applications. Inorg Chem Commun. 2021; 127:108553.
47.    Carmignan F, Matias R, Carollo CA, Dourado DM, Fermiano MH, Silva BAK, et al. Efficacy of application of Equisetum pyramidale Goldm. hydrogel for tissue restoration of induced skin lesions in Wistar rats. Braz J Biol. 2020; 80(1):12-22.
48.    Altameme HJ, Hameed IH, Abu-Serag NA. Analysis of bioactive phytochemical compounds of two medicinal plants, Equisetum arvense and Alchemila valgaris seed using gas chromatographymass spectrometry and fouriertransform infrared spectroscopy. Malays Appl Biol. 2015;44(4):47-58.
49.    LD TCT. ATR-FTIR spectra fingerprinting of medicinal herbs extracts prepared using microwave extraction. AJMAP. 2017; 3(1):1-9.
50.    Deyab MA, Mohsen Q, Guo L. Theoretical, chemical, and electrochemical studies of Equisetum arvense extract as an impactful inhibitor of steel corrosion in 2 M HCl electrolyte. Sci Rep. 2022; 12(1):2255.
51.    Masłowski M, Miedzianowska J, Czylkowska A, Strzelec K. Horsetail (Equisetum Arvense) as a functional filler for natural rubber biocomposites. Materials (Basel). 2020; 13(11):2526.
52.    Sathiyapriya R, Vijayakumar P, Rajesh S. Bio-fabrication of Cerium oxide nanoparticles using Azadirachta indica and their Antibacterial Activity. Int J Adv Sci Eng. 2020; 6:1462-1468.
53.    Aseyd Nezhad S, Es-haghi A, Tabrizi MH. Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl Organomet Chem. 2020; 34(2):5314.
54.    Miri A, Darroudi M, Sarani M. Biosynthesis of cerium oxide nanoparticles and its cytotoxicity survey against colon cancer cell line. Appl Organomet Chem. 2020; 34(1):5308.
55.    Lagashetty A, Ganiger SK, Preeti R, Reddy S, Pari M. Microwave-assisted green synthesis, characterization and adsorption studies on metal oxide nanoparticles synthesized using Ficus benghalensis plant leaf extracts. New J. Chem. 2020;44: 14095-14102.
56.    Arunachalam T, Karpagasundaram M, Rajarathinam N. Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Materials Science-Poland. 2017;35(4):791-798.
57.    Maqbool Q, Nazar M, Maqbool A, Pervez MT, Jabeen N, Hussain T, et al. CuO and CeO2 nanostructures green synthesized using olive leaf extract inhibits the growth of highly virulent multidrug resistant bacteria. Front Pharmacol. 2018; 9:987.
58.    Putri GE, Rilda Y, Syukri S, Labanni A, Arief S. Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J Mater Res Technol. 2021; 15:2355-2364.
59.    Surendra TV, Roopan SM. Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J Photochem Photobiol B. 2016; 161:122-128.
60.    Sisubalan N, Ramkumar VS, Pugazhendhi A, Karthikeyan C, Indira K, Gopinath K, et al. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ Sci Pollut Res Int. 2018; 25(11):10482-10492.
61.    Sheela K, Madhusudhanan J, Thirumagal J, Chawla N, Jagannathan S, Ahamed MN. Biosynthesis and biological applications of cerium oxide nanoparticles. Annals of RSCB. 2021; 25(6):203–213.
62.    Ahmad A, Javed MS, Khan S, Almutairi TM, Mohammed AAA, Luque R. Green synthesized Ag decorated CeO2 nanoparticles: Efficient photocatalysts and potential antibacterial agents. Chemosphere. 2023; 310:136841.
63.    Munirathnam R, Vidya Y, Manjunatha H, Manjunatha S, Sridhar K, Seenappa L, et al. Multifunctional Properties of Ocimumsanctum Linn Leaves Mediated Synthesis of Nanoceria. Materials Open. 2023; 1: 2350006.
64.    Sebastiammal S, Sonia S, Henry J, Fathima AL. Green synthesis of cerium oxide nanoparticles using aloevera leaf extract and its optical properties. Warasan Songkhla Nakharin. 2021; 43(2):582.
65.    Yulizar Y, Kusrini E, Apriandanu DOB, Nurdini N. Datura metel L. Leaves extract mediated CeO2 nanoparticles: Synthesis, characterizations, and degradation activity of DPPH radical. Surf Interfaces. 2020; 19:100437.
66.    Purushotham B, Surendra BS, TR SS, Prashantha SC. Eco-friendly synthesis of CeO2 NPs using Aloe barbadensis Mill extract: Its biological and photocatalytic activities for industrial dye treatment applications. J Photochem Photobiol. 2021; 7:100038.
67.    Sharma JK, Srivastava P, Ameen S, Akhtar MS, Sengupta S, Singh G. Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Mater Res Bull. 2017; 91:98- 107.
68.    Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, et al. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomedicine. 2016; 11:5015-5025.
69.    Reddy Yadav L, Manjunath K, Archana B, Madhu C, Raja Naika H, Nagabhushana H, et al. Fruit juice extract mediated synthesis of CeO 2 nanoparticles for antibacterial and photocatalytic activities. EPJ Plus. 2016; 131:1-10.
70.    Ibrahim AM, Mohamed F, Al-Quraishy S, Abdel-Baki A-AS, Abdel-Tawab H. Green synthesis of Cerium oxide/Moringa oleifera seed extract nano-composite and its molluscicidsal activities against biomophalaria alexanderina. J King Saud Univ Sci. 2021; 33(3):101368.
71.    Muthuvel A, Jothibas M, Mohana V, Manoharan C. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg Chem Commun. 2020; 119:108086.
72.    Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2015; 49:408-415.
73.    Dimitrijević R, Cvetković O, Miodragović Z, Simić M, Manojlović D, Jović V. SEM/EDX and XRD characterization of silver nanocrystalline thin film prepared from organometallic solution precursor. J. Min. Metall. Sect. B-Metall. 2013; 49(1):91-95.
74.    Jalili H, Aslibeiki B, Ghotbi Varzaneh A, Chernenko VA. The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles. Beilstein J Nanotechnol. 2019; 10:1348-1359.
75.    Nazaripour E, Mousazadeh F, Moghadam MD, Najafi K, Borhani F, Sarani M, et al. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorg Chem Commun. 2021;131:108800.
76.    Zhu H, Xu J, Yichuan Y, Wang Z, Gao Y, Liu W, et al. Catalytic oxidation of soot on mesoporous ceria-based mixed oxides with cetyltrimethyl ammonium bromide (CTAB)-assisted synthesis. J Colloid Interface Sci. 2017; 508:1-13.
77.    Mohamed AA, Fouda A, Abdel-Rahman MA, Hassan SE-D, El-Gamal MS, Salem SS, et al. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal Agric Biotechnol. 2019; 19:101103.
78.    Sankar V, SalinRaj P, Athira R, Soumya RS, Raghu KG. Cerium nanoparticles synthesized using aqueous extract of Centella asiatica: characterization, determination of free radical scavenging activity and evaluation of efficacy against cardiomyoblast hypertrophy. RSC Adv. 2015; 5(27):21074-21083.
79.    Wang Z, Zhu H, Ai L, Liu X, Lv M, Wang L, et al. Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln=La, Nd and Sm). J Colloid Interface Sci. 2016; 478:209-216.
80.    Aziz N, Fatma T, Varma A, Prasad R. Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles. 2014; 2014:1-6.
81.    Priya GS, Kanneganti A, Kumar KA, Rao KV, Bykkam S. Biosynthesis of cerium oxide nanoparticles using Aloe barbadensis miller gel. Int J Sci Res Publ. 2014;4(6):199- 224.
82.    Takma DK, Bozkurt S, Koç M, Korel F, Nadeem HŞ. Characterization and encapsulation efficiency of zein nanoparticles loaded with chestnut fruit shell, cedar and sweetgum bark extracts. Food Hydrocoll Health. 2023; 4:100151.
83.    Dutta D, Mukherjee R, Patra M, Banik M, Dasgupta R, Mukherjee M, et al. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids Surf B Biointerfaces. 2016; 147:45-53.
84.    Khan M, Sohail, Raja NI, Asad MJ, Mashwani ZU. Antioxidant and hypoglycemic potential of phytogenic cerium oxide nanoparticles. Sci Rep. 2023; 13(1):4514.
85.    Putri GE, Arief S, Jamarun N, Gusti FR, Zainul R. Microstructural analysis and optical properties of nanocrystalline cerium oxides synthesized by precipitation method. Rasayan J Chem. 2019;12(1):85-90.
86.    De Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol. 2012; 32(11):867-879.
87.    Putri GE, Arief S, Jamarun N, Gusti FR, Sary AN. Characterization of Enhanced Antibacterial Effects of Silver Loaded Cerium oxide Catalyst. Orient J Chem. 2018; 34(6): 2895-2901.
88.    Kannan S, Sundrarajan M. A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int J Nanosci. 2014; 13(03):1450018.
89.    Unnithan AR, Sasikala ARK, Sathishkumar Y, Lee YS, Park CH, Kim CS. Nanoceria doped electrospun antibacterial composite mats for potential biomedical applications. Ceram Int. 2014; 40(8):12003-12012.
90.    Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol. 2019; 47(1):844-851.
91.    Labanni A, Zulhadjri Z, Handayani D, Ohya Y, Arief S. The effect of monoethanolamine as stabilizing agent in Uncaria gambir Roxb. mediated synthesis of silver nanoparticles and its antibacterial activity. J Dispersf Sci. 2019; 41(10): 1480–1487.
92.    Burello E, Worth AP. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology. 2011; 5(2):228-235.
93.    Bhagat M, Anand R, Datt R, Gupta V, Arya S. Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym Mater. 2019; 29:1039-1047.
94.    Wang X, Yang F, Yang W, Yang X. A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem Commun (Camb). 2007;(42):4419-4421.
95.    Tong GX, Du FF, Liang Y, Hu Q, Wu RN, Guan JG, et al. Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J Mater Chem B. 2013; 1(4):454-463.