Subacute dermal toxicity investigation of nanosilver on serum chemical biomarkers in male mice

Document Type: Research Paper


1 Department of Biology, Faculty of Basic Sciences, University of Shahrekord, Shahrekord, Iran

2 Kashani Hospital, Shahrekord University of Medical Science, Shahrekord, Iran



Nanosilver is one of the most widely used nanomaterials due to its strong antimicrobial activity. Thus, because of increasing potential for exposure of human to nanosilver, there is an increasing concern about possible side effects of these nanoparticles. In this study, we tested the potential dermal toxicity of nanosilver bandage on serum chemical biomarkers in mice. 
Materials and Methods:
In this study, 20 male BALB/c mice were randomly allocated into the treatment and control groups (n=10). After general anesthesia and shaving the back of all animals in near the vertebral column, in the nanosilver group, a volume of 50μl of 10 μg/ml of nanosilver solution (40 nm), and in the control group the same amount of distilled water was added to the sterile bandage of mice, then the bandages were fixed on the skin surface with cloth glue. After 3 and 7 days, the bandages were opened and serum levels of blood urea
nitrogen (BUN), creatinine (Cr), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured by using standard kits for two groups of mice.  
In treatment group, a significant increase in ALT, AST and BUN levels were observed compared with control group during experiment periods (p<0.05), but there wasn’t a significant increase in Cr level in treatment group during experiment periods (p>0.05).  
The present results indicated that the dermal absorption of 10 μg/ml nanosilver (40 nm) can lead to hepatotoxicity and renal toxicity in mice.


1. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010; 28(11): 580-588.

2. White RJ. An historical overview of the use of silver in wound management. Br J Nurs 10 (15 Suppl. 2): 3-8.

3. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005; 113(7): 823-839.

4. Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P. The release of nanosilver from consumer products used in the home. J Environ Qual. 2010; 39(6): 1875-1882.

5. Kowalski Z, Makara A, Banach M, Kowalski M. Zastosowanie preparatów nanosrebra do oczyszczania powietrza z instalacji klimatyzacyjnej zakładów mięsnych. Przemysł Chemiczny. 2010; 89(4): 434-437.

6. Chen X, Schluesener H. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008; 176(1): 1-12.

7. Faunce T, Watal A. Nanosilver and global public health: international regulatory issues. Nanomedicine (Lond). 2010; 5(4): 617-632.

8. Arora S, Jain J, Rajwade J, Paknikar KM. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol. 2009; 236(3): 310-318.

9. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006; 5(4): 916-924.

10. Wzorek Z, Konopka M. Nanosrebro– nowy środek bakteriobójczy. Czas Tech Chemia 2007; 104(1): 175-181.

11. Seaton A, Donaldson K. Nanoscience, nanotoxicology, and the need to think small. Lancet. 2005; 365(9463): 923-924.

12. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008; 20(6): 575-583.

13. Kim YJ, Yang SI, Ryu JC. Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines. Mol Cell Toxicol.. 2010; 6(2): 119-125.

14. Kalishwaralal K, Banumathi E, Ram Kumar Pandian S, Deepak V, Muniyandi J, Eom SH, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces. 2009; 73(1): 51-57. 

15. Korani M, Rezayat S, Gilani K, Bidgoli SA, Adeli S. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine. 2011; 6: 855-862.

16. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2007; 19(10): 857-871.

17. Kvitek L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, et al. Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem C. 2009; 113(11): 4296-4300.

18. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006; 91(1): 159-165.

19. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol. 2009; 9(8): 4924-4932.

20. Tang J, Xi T. Status of biological evaluation on silver nanoparticles. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008; 25(4): 958-961.

21. Korani M, Rezayat SM, Arbabi Bidgoli S. Sub-chronic Dermal toxicity of silver nanoparticles in Guinea Pig: special emphasis to heart, bone and kidney toxicities. Iran J Pharm Res. 2013; 12(3): 511-519.

22. Bidgoli SA, Mahdavi M, Rezayat SM, Korani M, Amani A, Ziarati P. Toxicity assessment of nanosilver wound dressing in Wistar rat. Acta Med Iran. 2013; 51(4): 203-208.

23. Wasukan N, Kulthong K, Srisung S, Maniratanachote R. A method to evaluate potential dermal exposure to silver in nanoproducts. Proceedings of NanoThailand. 2012; 2012: 1-4.

24. Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010; 7(1): 20.

25. Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci. 2011; 73(11): 1417-1423.

26. Park K, Park EJ, Chun IK, Choi K, Lee SH, Yoon J, et al. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res. 2011; 34(1): 153-158.

27. Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011; 8(1): 18.

28. Hadrup N, Loeschner K, Bergström A, Wilcks A, Gao X, Vogel U, et al. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch Toxicol. 2012; 86(4): 543-551.

29. Jeong GN, Jo UB, Ryu HY, Kim YS, Song KS, Yu IJ. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague–Dawley rats. Arch Toxicol. 2010; 84(1): 63-69.

30. Cha K, Hong HW, Choi YG, Lee MJ, Park JH, Chae HK, et al. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett. 2008; 30(11): 1893-1899.

31. Ahmadi F, Kordestany AH. Investigation on silver retention in different organs and oxidative stress enzymes in male broiler fed diet supplemented with powder of nano silver. Amer-Eurasian J Toxicol Sci. 2011; 3(1):28-35.

32. Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009; 108(2): 452-461.

33. Kim JS, Sung JH, Ji JH, Song KS, Lee JH, Kang CS, et al. In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work. 2011; 2(1): 34-38.

34. Tiwari DK, Jin T, Behari J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods. 2011; 21(1): 13-24.

35. Daniel SCGK, Tharmaraj V, Sironmani TA, Pitchumani K. Toxicity and immunological activity of silver nanoparticles. Appl Clay Sci. 2010; 48(4): 547-551.

36. Yousef J, Hendi H, Hakami FS, Awad MA, Alem AF, Hendi AA, et al. Toxicity of Silver Nanoparticles after Injected Intraperitoneally in Rats. Journal of American Science. 2012; 8(3): 589-593.

37. Stepien KM, Morris R, Brown S, Taylor A, Morgan L. Unintentional silver intoxication following self-medication: an unusual case of corticobasal degeneration. Ann Clin Biochem. 2009; 46(6): 520-522.

38. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparticles to chlamy-domonas reinhardtii. Environ Sci Technol. 2008; 42(23): 8959-8964.

39. Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y. Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J Biochem. 2003; 134(1): 43-49.

40. Panácek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006; 110(33): 16248-16253.

41. Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost–de Jong A, Noorlander C, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials. 2010; 31(32): 8350-8361.