Non-biological gene carriers designed for overcoming the major extra- and intracellular hurdles in gene delivery, an updated review

Document Type: Review Paper


1 Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran


Gene therapy as a modern therapeutic approach has not yet advanced to a globally-approved therapeutic approach. Lack of adequate reliable gene delivery system seems to be one of the major reasons from the pharmaceutical biotechnology point of view. Main obstacles delaying successful application of human gene therapy are presented in this review. The unique advantages of non-biological gene carriers as compared to their biological counterparts make them ideal alternatives for  overcoming extra- and intracellular barriers in a more safely manner. We, therefore, highlight the significant contributions in non-biological gene delivery and favorable characteristics of different design attitudes with focus on in vivo approaches. Bypassing the rapid extracellular enzymatic degradation of genetic materials is covered in extracellular segment of this review with emphasis on PEGylated and targeted formulations. The successful approaches to pave the rest of the way from cellular uptake to intracellular transfer and gene expression of unpacked DNA are also discussed. From these approaches, we emphasize more on optimization of cationic-based polymers and dendrimers, developing newly designed membrane-effective components, and adjusting the hydrophilic-hydrophobic balance of the synthesized vectors


  1. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med. 2013; 15(2): 65-77.
  2. Pathak A, Patnaik S, Gupta KC. Recent trends in non-viral vector-mediated gene delivery. Biotech J. 2009; 4(11): 1559-1572.
  3. Atkinson H, Chalmers R. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica. 2010; 138(5): 485-498.
  4. Park F, Gow KW. Gene therapy: future or flop. Pediatr Clin North Am. 2006; 53(4): 621-638.
  5. Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther. 2008; 15(11): 858-863.
  6. Flotte TR, Zeitlin PL, Reynolds TC, Heald AE, Pedersen P, Beck S, et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther. 2003; 14(11): 1079-1088.
  7. Carter BJ. Adeno-associated virus vectors in clinical trials. Hum Gene Ther. 2005; 16(5): 541-550.
  8. von Laer D, Baum C, Protzer U. Antiviral gene therapy. Handb Exp Pharmacol. 2009; (189): 265-297.
  9. Luo K, Li C, Wang G, Nie Y, He  B,   Wu Y, et al. Peptide dendrimers as efficient and biocompatible gene delivery vectors: Synthesis and in vitro characterization. J Control Release. 2011; 155(1): 77-87.
  10. Seow Y, Wood MJ. Biological gene delivery vehicles: beyond viral vectors. Mol Ther. 2009; 17(5): 767-777.
  11. De Jonge J, Leenhouts JM, Holtrop M, Schoen P, Scherrer P, Cullis PR, et al. Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. Biochem J. 2007; 405(1): 41-49.
  12. Verma IM, Somia N. Gene therapy -- promises, problems and prospects. Nature. 1997; 389(6648): 239-242.
  13. Vazquez E, Ferrer-Miralles N, Villaverde A. Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discov Today. 2008; 13(23-24): 1067-1074.
  14. Ruponen M, Honkakoski P, Ronkko S, Pelkonen J, Tammi M, Urtti A. Extracellular and intracellular barriers in non-viral gene delivery. J Control Release. 2003; 93(2): 213-217.
  15. Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J Pharm Sci. 2003; 92(2): 203-217.
  16. Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm. 2012; 427(1): 3-20.
  17. Wu TL, Ertl HC. Immune barriers to successful gene therapy. Trends Mol Med. 2009; 15(1): 32-39.
  18. Grigsby CL, Leong KW. Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J R Soc Interface. 2010; 7(1): S67-82.
  19. Mishra S WP, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004; 83(3): 97-111.
  20. Malek A, Merkel O, Fink L, Czubayko F, Kissel T, Aigner A. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol Appl Pharmacol. 2009; 236(1): 97-108.
  21. Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012; 4(2): 219-233.
  22. Qi R, Gao Y, Tang Y, He RR, Liu TL, He Y,     et al.     PEG-conjugated     PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS J, 2009; 11(3): 395-405.
  23. Kichler A, Chillon M, Leborgne C, Danos O, Frisch B. Intranasal gene delivery with a polyethylenimine-PEG conjugate. J Control Release. 2002; 81(3): 379-388.
  24. Khargharia S, Kizzire K, Ericson MD, Baumhover NJ, Rice KG. PEG length and chemical linkage controls polyacridine peptide DNA polyplex pharmacokinetics, biodistribution, metabolic stability and in vivo gene expression. J Control Release. 2013; 170(3): 325-333.
  25. Guo S, Huang L. Nanoparticles Escaping RES and Endosome: Challenges for siRNA Delivery for Cancer Therapy. J Nanomater. 2011; 2011: 1-12.
  26. Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. J Pharm Sci. 2008; 16(354): 56-62.
  27. Tripathi SK, Goyal R, Kumar P, Gupta KC. Linear polyethylenimine-graft-chitosan copolymers as efficient DNA/siRNA delivery vectors in vitro and in vivo. Nanomedicine. 2012; 8(3): 337-345.
  28. Abdullah S, Wendy-Yeo W, Hosseinkhani H, Hosseinkhani M, Masrawa E, Ramasamy R, et al. Gene transfer into the lung by nanoparticle dextran-spermine/plasmid DNA complexes. J Biomed Biotechnol. 2010; 2010:284840.
  29. Ishihara T, Maeda T, Sakamoto H, Takasaki N, Shigyo M, Ishida T, et al. Evasion of the accelerated blood clearance phenomenon by coating of nanoparticles with various hydrophilic polymers. Biomacromolecules. 2010; 11(10): 2700-2706.
  30. Von Erlach T, Zwicker S, Pidhatika B, Konradi R, Textor M, Hall H, et al. Formation and characterization of DNA-polymer-condensates based on poly(2-methyl-2-oxazoline) grafted poly(L-lysine) for non-viral delivery of therapeutic DNA. Biomaterials. 2011; 32(22): 5291-5303.
  31. Oupicky D, Ogris M, Howard KA, Dash PR, Ulbrich K, Seymour LW. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol Ther. 2002; 5(4): 463-472.
  32. Knorr V, Allmendinger L, Walker GF, Paintner FF, Wagner E. An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes. Bioconjug Chem. 2007; 18(4): 1218-1225.
  33. Nie Y, Gunther M, Gu Z, Wagner E. Pyridylhydrazone-based PEGylation for pH-reversible lipopolyplex shielding. Biomaterials. 2011; 32(3): 858-869.
  34. Hatakeyama H, Akita H, Ito E, Hayashi Y, Oishi M, Nakasaki Y, et al. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials. 2011; 32(18): 4306-4316.
  35. Jia L, Li Z, Zhang D, Zhang Q, Shen J, Guo H, et al. Redox-responsive catiomer based on PEG-ss-chitosan oligosaccharide-ss-polyethylenimine copolymer for effective gene delivery. Polym Chem. 2013; 4: 156-165.
  36. Dufes C, Al Robaian M, Somani S. Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells. Ther Deliv. 2013; 4(5): 629-640.
  37. Wang S, Low PS. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release. 1998; 53(1-3): 39-48.
  38. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release. 2003; 91(1-2): 173-181.
  39. Ping Y HQ, Tang G, Li J. FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG. Biomaterials. 2013; 34(27): 6482-6494.
  40. Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv. 2008; 5(2): 189-204.
  41. Shiota M, Ikeda Y, Kaul Z, Itadani J, Kaul SC, et al. (2007) Internalizing antibody-based targeted gene delivery for human cancer cells. Hum Gene Ther 18(11): 1153-1160. Epub 2007/10/17.
  42. Dehshahri A, Oskuee RK, Ramezani M. Plasmid DNA delivery into hepatocytes using a multifunctional nanocarrier based on sugar-conjugated polyethylenimine. Gene Ther Mol Bio. 2012; 14: 62-71.
  43. Chen CW, Lu DW, Yeh MK, Shiau CY, Chiang CH. Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine. 2011; 6: 2567-2580.
  44. Roulon T HC, Escudé C.   Coupling o  f  a targeting peptide to plasmid DNA using a new type of padlock oligonucleotide. Bioconjug Chem. 2002; 13(5): 1134-1139.
  45. Baryshev M, Vainauska D, Kozireva S, Karpovs A. New device for enhancement of liposomal magnetofection efficiency of cancer cells. World Academy Sci Eng Tech. 2011; 58: 306.
  46. Sakurai F NT, Yamashita F, Takakura Y, Hashida M. Effects of erythrocytes and serum proteins on lung accumulation of lipoplexes containing cholesterol or DOPE as a helper lipid in the single-pass rat lung perfusion system. Eur J Pharm Biopharm. 2001; 52(2): 165-172.
  47. Wen Y, Guo Z, Du Z, Fang R, Wu H, Zeng X, et al. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials. 2012; 33(32): 8111-8121.
  48. Hashimoto M, Morimoto M, Saimoto H, Shigemasa Y, Sato T. Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconjug Chem. 2006; 17(2): 309-316.
  49. Pan S, Cao D, Huang H, Yi W, Qin L, Feng M. A Serum-Resistant Low-Generation Polyamidoamine with PEI 423 Outer Layer for Gene Delivery Vector. Macromol Biosci. 2013; 13(4): 422-436.
  50. Agarwal A, Vilensky R, Stockdale A, Talmon Y, Unfer RC, Mallapragada SK. Colloidally stable novel copolymeric system for gene delivery in complete growth media. J Control Release. 2007; 121(1-2): 28-37.
  51. Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010; 6(1): 12-21.
  52. Chenuet S, Derouazi M, Hacker D, Wurm F. DNA delivery by microinjection for the generation of recombinant mammalian cell lines. Methods Mol Biol. 2009; 518: 99-112.
  53. Zhang Y, Yu LC. Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol. 2008; 19(5): 506-510.
  54. Han SW, Nakamura C, Kotobuki N, Obataya I, Ohgushi H, Nagamune T, et al. High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine. 2008; 4(3): 215-225.
  55. Favard C, Dean DS, Rols MP. Electrotransfer as a non viral method of gene delivery. Curr Gene Ther. 2007; 7(1): 67-77.
  56. Murakami T, Sunada Y. Plasmid DNA gene therapy by electroporation: principles and recent advances. Curr Gene Ther. 2011; 11(6): 447-456.
  57. Huls MH, Figliola MJ, Dawson MJ, Olivares S, Kebriaei P, Shpall EJ, et al. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp. 2013; (72):e50070. doi: 10.3791/50070.
  58. Wells DJ. Electroporation and ultrasound enhanced non-viral gene delivery in vitro and in vivo. Cell Biol Toxicol. 2010; 26(1): 21-28.
  59. Luby-Phelps K, Castle PE, Taylor DL, Lanni F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci U S A. 1987; 84(14): 4910-4913.
  60. O'Brien JA, Lummis SC. Biolistic transfection of neurons in organotypic brain slices. Methods Mol Biol. 2013; 940: 157-166.
  61. Aravindaram K, Yin SY, Yang NS. Biolistic transfection of tumor tissue samples. Methods Mol Biol. 2013; 940: 133-143.
  62. Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, et al. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology. 2012; 1(9): 1537-1545.
  63. Schwerdt JI, Goya GF, Calatayud MP, Herenu CB, Reggiani PC, Goya RG. Magnetic field-assisted gene delivery: achievements and therapeutic potential. Curr Gene Ther. 2012; 12(2): 116-126.
  64. Hart SL. Multifunctional nanocomplexes for gene transfer and gene therapy. Cell Biol Toxicol. 2010; 26(1): 69-81.
  65. Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm. 2012; 9(9): 2380-2402.
  66. Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev. 2012; 41(7): 2718-2739.
  67. Xiang S, Fruehauf J, Li CJ. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol. 2006; 24(6): 697-702.
  68. Naik RJ, Chatterjee A, Ganguli M. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines. Biochim Biophys Acta. 2013; 1828(6): 1484-1493.
  69. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010; 145(3): 182-195.
  70. Tros de Ilarduya C, Sun Y, Duzgunes N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci. 2010; 40(3): 159-170.
  71. Tiera MJ, Shi Q, Winnik FM, Fernandes JC. Polycation-based gene therapy: current knowledge and new perspectives. Curr Gene Ther. 2011; 11(4): 288-306.
  72. Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev. 2001; 53(3): 341-358.
  73. Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012; 18(7): 385-393.
  74. Bechara C, Sagan S. Cell-penetrating peptides: 20years later, where do we stand? FEBS Lett. 2013; 587(12): 1693-1702.
  75. Subrizi A, Tuominen E, Bunker A, Rog T, Antopolsky M, Urtti A. Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J Control Release. 2012; 158(2): 277-285.
  76. Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P, Tyagi A, et al. In silico approaches for designing highly effective cell penetrating peptides. J Transl Med. 2013; 11: 74. doi:10.1186/1479-5876-11-74
  77. Layek B, Singh J. Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: effect of degree of substitution. Int J Pharm. 2013; 447(1-2): 182-191.
  78. Piest M, Engbersen JF. Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery. J Control Release. 2010; 148(1): 83-90.
  79. Layek B, Singh J. Amino acid grafted chitosan for high performance gene delivery: comparison of amino acid hydrophobicity on vector and polyplex characteristics. Biomacromolecules. 2013; 14(2): 485-494.
  80. Lorenz S, Hauser CP, Autenrieth B, Weiss CK, Landfester K, Mailander V. The softer and more hydrophobic the better: influence of the side chain of polymethacrylate nanoparticles for cellular uptake. Macromol Biosci. 2010; 10(9): 1034-1042.
  81. Fortune JA, Novobrantseva TI, Klibanov AM. Highly effective gene transfection in vivo by alkylated polyethylenimine. J Drug Deliv. 2011; 2011: 1-6. 204058.
  82. Duzgune scedil N, Nir S. Mechanisms and kinetics of liposome-cell interactions. Adv Drug Deliv Rev. 1999; 40(1-2): 3-18.
  83. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987; 84(21): 7413-7417.
  84. Gao X, Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995; 2(10): 710-722.
  85. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008; 29(24-25): 3477-3496.
  86. Almofti MR, Harashima H, Shinohara Y, Almofti A, Baba Y, Kiwada H. Cationic liposome-mediated gene delivery: biophysical study and mechanism of internalization. Arch Biochem Biophys. 2003; 410(2): 246-253.
  87. Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release. 2006; 116(2): 255-264.
  88. Siegel DP, Epand RM. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J. 1997; 73(6): 3089-3111.
  89. Yang SY, Zheng Y, Chen JY, Zhang QY, Zhao D, Han DE, et al. Comprehensive study of cationic liposomes composed of DC-Chol and cholesterol with different mole ratios for gene transfection. Colloids Surf B Biointerfaces. 2013; 101: 6-13.
  90. Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011; 151(3): 220-228.
  91. Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC Jr. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry. 1997; 36(10): 3008-3017.
  92. Tu Y, Kim JS. A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes. J Gene Med. 2008; 10(6): 646-654.
  93. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005; 4(7): 581-593.
  94. Schaffert D, Wagner E. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. 2008; 15(16): 1131-1138.
  95. Yurek DM, Fletcher AM, Smith GM, Seroogy KB, Ziady AG, Molter J, et al. Long-term transgene expression in the central nervous system using DNA nanoparticles. Mol Ther. 2009; 17(4): 641-650.
  96. Ding XQ, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI. Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PloS one. 2009; 4(10): e7410.
  97. Liu G, Li D, Pasumarthy MK, Kowalczyk TH, Gedeon CR, Hyatt SL, et al. Nanoparticles of compacted DNA transfect postmitotic cells. Journal Biol Chem. 2003; 278(35): 32578-32586.
  98. Chen X, Kube DM, Cooper MJ, Davis PB. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA. Mol Ther. 2008; 16(2): 333-342.
  99. Kim AJ, Boylan NJ, Suk JS, Lai SK, Hanes J. Non-degradative intracellular trafficking of highly compacted polymeric DNA nanoparticles. J Control Release. 2012; 158(1): 102-107.
100. Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release. 2009; 136(1): 54-61.

101. Sahay G, Kim JO, Kabanov AV, Bronich TK. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. Biomaterials. 2010; 31(5): 923-933.

102. Srinivas R, Samanta S, Chaudhuri A. Cationic amphiphiles: promising carriers of genetic materials in gene therapy. Chem Soc Rev. 2009; 38(12): 3326-3338.

103. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995; 92(16): 7297-7301.

104. Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng. 2006; 8: 343-375.

105.Chen QR, Zhang L, Luther PW, Mixson AJ. Optimal transfection with the HK polymer depends on its degree of branching and the pH of endocytic vesicles. Nucleic Acids Res. 2002; 30(6): 1338-1345.

106. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013; 21(1): 149-157.

107. Midoux P, Kichler A, Boutin V, Maurizot JC, Monsigny M. Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. Bioconjug Chem. 1998; 9(2): 260-267.

108. Shaheen SM, Akita H, Nakamura T, Takayama S, Futaki S, Yamashita A, et al. KALA-modified multi-layered nanoparticles as gene carriers for MHC class-I mediated antigen presentation for a DNA vaccine. Biomaterials. 2011; 32(26): 6342-6350.

109. Soltani F, Sankian M, Hatefi A, Ramezani M. Development of a novel histone H1-based recombinant fusion peptide for targeted non-viral gene delivery. Int J Pharm. 2013; 441(1-2): 307-315.

110. Oskuee RK, Dehshahri A, Shier WT, Ramezani M. Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. J Gene Med. 2009; 11(10): 921-932.

111. Parhiz H, Hashemi M, Hatefi A, Shier WT, Amel Farzad S, Ramezani M. Arginine-rich hydrophobic polyethylenimine: Potent agent with simple components for nucleic acid delivery. Int J Biol Macromol. 2013; 60: 18-27.

112. Hashemi M, Parhiz BH, Hatefi A, Ramezani M. Modified polyethyleneimine with histidine-lysine short peptides as gene carrier. Cancer Gene Ther. 2011; 18(1): 12-19.

113. Arukuusk P, Parnaste L, Oskolkov N, Copolovici DM, Margus H, Padari K, et al. New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochim Biophys Acta. 2013; 1828(5): 1365-1373.

114. Ondrej V, Lukasova E, Falk M, Kozubek S. The role of actin and microtubule networks in plasmid DNA intracellular trafficking. Acta Biochim Pol. 2007; 54(3): 657-663.

115. Suh J, Wirtz D, Hanes J. Efficient active transport of gene nanocarriers to the cell nucleus. Proc Natl Acad Sci U S A. 2003; 100(7): 3878-3882.

116. Doyle SR, Chan CK. Differential intracellular distribution of DNA complexed with polyethylenimine (PEI) and PEI-polyarginine PTD influences exogenous gene expression within live COS-7 cells. Genet Vaccines Ther. 2007; 5: 11.

117. Chen X, Shank S, Davis PB, Ziady AG. Nucleolin-mediated cellular trafficking of DNA nanoparticle is lipid raft and microtubule dependent and can be modulated by glucocorticoid. Mol Ther. 2011; 19(1): 93-102.

118. Barua S, Rege K. The influence of mediators of intracellular trafficking on transgene expression efficacy of polymer-plasmid DNA complexes. Biomaterials. 2010; 31(22): 5894-5902.

119. Badding MA, Vaughan EE, Dean DA. Transcription factor plasmid binding modulates microtubule interactions and intracellular trafficking during gene transfer. Gene Ther. 2012; 19(3): 338-346.

120. Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 1999; 6(4): 482-497.

121. Lam AP, Dean DA. Progress and prospects: nuclear import of nonviral vectors. Gene Ther. 2010; 17(4): 439-447.

122. Parhiz H, Hashemi M, Hatefi A, Shier WT, Farzad SA, Ramezani M. Molecular weight-dependent genetic information
transfer with disulfide-linked polyethylenimine-based nonviral vectors. J Biomater Appl. 2013; 28(1): 112-124.

123. Ma K, Hu M, Xie M, Shen H, Qiu L, Fan W, et al. Investigation of polyethylenimine-grafted-triamcinolone acetonide as nucleus-targeting gene delivery systems. J Gene Med. 2010; 12(8): 669-680.

124. Liashkovich I, Meyring A, Oberleithner H, Shahin V. Structural organization of the nuclear pore permeability barrier. J Control Release. 2012; 160(3): 601-608.

125. Grandinetti G, Smith AE, Reineke TM. Membrane and nuclear permeabilization by polymeric pDNA vehicles: efficient method for gene delivery or mechanism of cytotoxicity? Mol Pharm. 2012; 9(3): 523-538.

126. Yamada Y, Nomura T, Harashima H, Yamashita A, Yui N. Post-nuclear gene delivery events for transgene expression by biocleavable polyrotaxanes. Biomaterials. 2012; 33(15): 3952-3958.

127. Dehshahri A, Oskuee RK, Shier WT, Hatefi A, Ramezani M. Gene transfer efficiency of high primary amine content, hydrophobic, alkyl-oligoamine derivatives of polyethylenimine. Biomaterials. 2009; 30(25): 4187-4194.

128. Kimura T, Yamaoka T, Iwase R, Murakami A. Effect of serine residue on the effectiveness of cationic polypeptide-based gene delivery. Nucleic Acids Symp Ser. 2000; (44): 299-300.

129. Van Gaal EV, Oosting RS, van Eijk R, Bakowska M, Feyen D, Kok RJ, et al. DNA nuclear targeting sequences for non-viral gene delivery. Pharm Res. 2011; 28(7): 1707-1722.