Effect of CuO nanoparticles on some hematological indices of rainbow trout oncorhynchus mykiss and their potential toxicity

Document Type: Research Paper


1 Department of Fisheries, Gonbad Kavous University, Gonbad Kavous, Iran

2 Department of Fisheries, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran

3 Research club of Islamic Azad University of Shahrekord, Shahrekord, Iran



This study aimed to determine the possible toxicity of Cuo nanoparticles (NPs) on Oncorhynchus mykiss by evaluating hematological parameters.
Materials and Methods:
Fish were sampled and treated in 4 aquariums containing the concentration ranges of 1, 5, 20 and 100 ppm of CuO NPs. There was one control group (no CuO NPs) and three replicates. The physicochemical properties of water were as follows: the temperature was 22±2 Cº, oxygen saturation was 90.9±0.2%, pH was at 7±0.004 and the concentration of CaCO3 was 270.
No mortality was observed after 96 hours of exposure. The analysis of hematological parameters showed that CuO NPs affected the counts of white blood cells, lymphocytes, eosinophils, neutrophils, hematocrits, MCH, MCHC and MCV and did not have any effects on monocytes and hemoglobins.

The data showed that the overall hardness (270 ppm) neutralized the lethal effect of copper on O. mykiss and no mortality was recorded.


1. Zhou B, Gitschier J. HCTR1: A human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA. 1997; 94(14): 7481-7486.

2. Grosell M,  Blanchard  J,  Brix  KV,  Gerdes  R. Physiology  is  pivotal  for  interactions  between  salinity  and  acute  copper  toxicity  to  fish  and  invertebrates. Aquat Toxicol. 2007; 84(2): 162-172.

3. Mustafa SA, Davies SJ, Jha AN. Determination  of  hypoxia  and  dietary  copper  mediated  sub-lethal  toxicity  in  carp,  Cyprinus  carpio,  at  different  levels  of biological  organisation.  Chemosphere. 2012; 87(4): 413-422.

4. Speisky H, Gómez M, Burgos-Bravo F, López-Alarcón C, Jullian C, Olea-Azar C, et al. Generation of superoxide radicals by copper-glutathione complexes: redox-consequences associated with their interaction with reduced glutathione. Bioorg Med Chem. 2009; 17(5): 1803-1810.

5. Prousek J. Fenton chemistry in biology and medicine. Pure Appl Chem. 2007; 79(12): 2325-2338.

6. Isani G, Monari M, Andreani G, Fabbri M, Carpenè E. Effect of copper exposure on the antioxidant enzymes in bivalve mollusk Scapharca inaequivalvis. Vet Res Commun. 2003; 27 (1): 691-693.

7. Al-Bairuty GA, J. Shaw BD, Handy RB.  Henry T. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 2013; 126: 104-115.

8. Roco MC. Nanotechnolgy:  convergence with modern biology and medicine. Curr Opin  Biotechnol. 2003; 14(3): 337-346.

9. Karnik BS, Davies SH, Baumann MJ, Masten SJ. Fabrication  of  catalytic  membranes  for  the  treatment  of  drinking  water  using  combined  ozonation  and ultrafiltration. Environ Sci Technol. 2005; 39(19): 7656-7661.

10. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M. Manufacture  and  use  of  nanomaterials:  current  status  in  the  UK  and  global  trends. Occup Med. 2006; 56(5): 300-306.

11. Brody AL. Nano and food packaging technologies converge. Food Technol. 2006; 60: 92-94.

12. Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G. Risk assessment of engineered nanomaterials and nanotechnologies, a review. Toxicology. 2010; 269(2-3): 92-104.

13. Kiaune L, Singhasemanon N. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. Rev Environ Contam Toxicol. 2011; 213: 1-26.

14. Isani G, Letizia Falcioni M, Barucca G, Sekar D, Andreani G, Carpenè E, et al. Comparative toxicity of CuO nanoparticles and CuSO4in rainbow trout. Ecotoxicol Environ Saf. 2013; 97: 40-46.

15. Talas ZS, Gulhan MF. Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf. 2009; 72: 1994-1998.

16. Handy RD, von der Kammer F, Lead JR, Hassellöv M,  Owen R, Crane M. The ecotoxicology and chemistry of manufactured nanoparticles.  Ecotoxicology. 2008; 17(4): 287-314.

17. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem. 2008; 27(9): 1825-1851.

18. Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors. 2008; 8(8): 5153-5170.

19. Handy  RD, Al-Bairuty  G, Al-Jubory  A, Ramsden  CS, Boyle  D, Shaw  BJ, et al.    Effects  of  manufactured  nanomaterials  on  fishes:  a  target  organ  and body  systems  physiology  approach.  J Fish Biol. 2011; 79(4): 821-853.

20. Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci. 2004; 110(1-2): 49-74.

21. Wintrobe MM. Clinical Hematology. Kipton, London. Zar, J.H., 1974. Biostatistical Analysis. Prentice-Hall, Engelwood Cliffs, NJ. 1978; 260.

22. Mukherjee KL. Medical Laboratory Technology. Aprocedure manual for routine diagnostics tests, Vol I., Tata-McGraw- Hill, New Delhi. 1988; 48.

23. Landis WG, Yu M. Introduction to Environmental Toxicology. Crc Press. 2004. P. 509.

24. Griffin BR, Mitchell AJ. Susceptibility of channel catfish, Ictalurus punctatus (Rafinesque), to Edwardsiella ictaluri challenge following copper sulphate exposure. J Fish Dis. 2007; 30(10): 581-585.

25. Lloyd R. Factors that affect the tolerance of fish to heavy metal poisoning. Biological Problems in Water Pollution, Third Seminar, 1962 U.S. Publ. Hlth Serv. Publ. No. 999-WP-25.  1965; 181-187.

26. Mount DI. The  effect of  total  hardness  and  pH on  acute  toxicity  of  zinc  to  fish. Air War Pollut. 1966; 10(1): 49-56.

27. Howarth RS, Sprague JB. Copper lethality to rainbow trout in waters of various hardness and pH. Water Res. 1978; 12(7): 455-462.

28. Yim JH, Kim KW, Kim SD. Effects of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity. J Hazard Mater. 2006; 138(1): 16-21.

29. Decie SIV, Lewis SM. Practical Hemotology, 7th Edition. Churchill Livingstone, London/Melbourne/New York. 1991.

30. Gundersen DT, Curtis LR. Acclimation to hard or soft water at weakly alkaline pH influences gill permeability and gill surface calcium binding in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci. 1995; 52(12): 2583-2593.

31. Penttinen S, Kostamo A, Kukkonen JVK. Combined effects of dissolved organic material and water hardness on toxicity of cadmium to Daphnia magna. Environ Toxicol Chem. 1998; 17(12): 2498-2503.

32. Richey D, Roseboom D. Acute toxicity of copper to some fishes in high alkalinity water. Illinois state water survey, Urbana, Circular. 1978; 131: 24.

33. Thomas S, Egee S. Fish Red Blood Cells: Characteristics and Physiological Role of the Membrane Ion Transporters. Comp Biochem Physiol A Mol Integr Physiol. 1998; 119(1): 79-86.

34. Neumann NF, Barreda DR, Belosevic M. Generation and functional analysis of distinct macrophage sub-populations from goldfish (Carassius auratus L.) kidney leukocyte cultures. Fish Shellfish Immunol. 2000; 10(1): 1-20.

35. Rieger AM, Hall BE, Barreda DR. Macrophage activation differentially modulates particle binding, phagocytosis and downstream antimicrobial mechanisms. Dev Comp Immunol. 2010; 34(11): 1144-1159.

36. Svoboda M, Luskova V, Drastichova J, Zlabek V. The effect of Diazinon on hematological indices of common carp (Cyprinus carpio. L). Acta Vet Brno. 2001; 70: 457-465.

37. Banaee M, Mirvagefei AR, Rafei GR, Majazi Amiri B. Effect of sub-lethal diazinon concentration on blood plasma biochemistry. Int J Environ Res. 2008; 2 (2): 189-198.

38. Chen  Z,  Meng  H,  Xing  G,  Chen  C,  Zhao  Y,  Jia  G,  et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett. 2006; 163(2): 109-120.

39. Kosai P, Jiraungkoorskul W, Thammasunthorn T, Jiraungkoorskul K. Reduction  of  copper-induced histopathological alterations by calcium exposure in Nile tilapia  (Oreochromis niloticus). Toxicol Mech Methods. 2009; 19 (6-7): 461-467.

40. Nath R, Banerjee V. Effect of pesticides methylparathion and cypermethrin on the air-breathing fish Heteropneustes fossilis. Environ Ecol. 1996; 14: 163-165.

41. Siwicki AK, Cossarini-Dunier M, Studnicka M, Demael A. In vivo effect of the organophosphorus insecticide trichlorphon on imunne response of carp (Cyprinus carpio). II. Effect of high doses of trichlorphon on nonspecific immune response. Ecotoxicol Environ Saf. 1990; 19(1): 99-105.

42. Holland MM, Steven M, Gallin JI. Disorders of Granulocytes and Monocytes. In Harrison’s Principles of Internal Medicine, edited by Anthony S. Fauci, et al. New York, McGraw-Hill. 1997.

43. Ghosh K, Banerjee V. Alteration in bloodparameters in the fish Heteropneustes fossilis exposed to dimethoate. Environ Ecol. 1993; 11: 979-981.