Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.)

Document Type: Research Paper

Authors

Department of Chemical Engineering, Jadavpur University, India

10.7508/nmj.2015.02.002

Abstract

Objective(s):
Our present study sought to evaluate hepatoprotective and antioxidant effects of methanol extract of Azolla microphylla phytochemically synthesized gold nanoparticles (GNaP) in acetaminophen (APAP) - induced hepatotoxicity of fresh water common carp fish.
Materials and Methods:
GNaP were prepared by green synthesis method using methanol extract of Azolla microphylla.  Twenty four fishes weighing 146 ± 2.5 g were used in this experiment and these were divided into four experimental groups, each comprising 6 fishes. Group 1 served as control. Group 2 fishes were exposed to APAP (500 mg/kg) for 24 h. Groups 3 and 4 fishes were exposed to APAP (500 mg/kg) + GNaP (2.5 mg/kg) and GNaP (2.5 mg/kg) for 24 h, respectively. The hepatoprotective and antioxidant potentials were assessed by measuring liver damage, biochemical parameters, ions status, and histological alterations.
Results:
APAP exposed fish showed significant elevated levels of metabolic enzymes (LDH, G6PDH and MDH), hepatotoxic markers (GPT, GOT and ALP), reduced hepatic glycogen, lipids, protein, albumin, globulin, increased levels of bilirubin, creatinine, and oxidative stress markers (TBRAS,  LHP and protein carbonyl), altered the tissue enzymes (SOD, CAT, GSH-Px and GST) non-enzyme (GSH), cellular sulfhydryl (T-SH, P-SH and NP-SH) levels, reduced hepatic ions (Ca2+, Na+ and K+), and abnormal liver histology. It was observe that GNaP has reversal effects on the levels of above mentioned parameters in APAP hepatotoxicity.
Conclusion:
Azolla microphylla phytochemically synthesized GNaP protects liver against oxidative damage and tissue damaging enzyme activities and could be used as an effective protector against acetaminophen-induced hepatic damage in fresh water common carp fish.

Keywords


1. Shen X, Tanga Y, Yang R, Yua L, Fanga T, Duan J. The protective effect of Zizyphus jujube fruit on carbon tetrachloride-induced hepatic injury in mice by anti-oxidative activities. J Ethnopharmacol. 2009; 122: 555-560.

2. Tarantino G, Di Minno MN, Capane D. Drug induced liver injury: Is it somehow foreseeable?. World J Gastroenterol. 2009; 15: 2817-2833.

3. Lee CH, Park SW, Kim YS, Kang SS, Kim JA, Lee SH, Lee SM. Protective mechanism of glycyrrhizin on acute live injury induced by carbon tetrachloride in mice. Biol Pharm Bulletin. 2007; 30: 1898-1904.

4. Ostapowicz G, Fontana R.J, Schiodt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med. 2002; 137: 947-954.

5. Davidson DG, Eastham WN. Acute liver necrosis following over dose of paracetamol. Br Med J. 1966; 5512: 497-499.

6. Black M. Acetaminophen hepatotoxicity. Ann Rev Med. 1984; 35: 577-593.

7. McClain C J, Holtzman J, Allen J, Kromhout J, Shedlofsky S. Clinical features of acetaminophen toxicity. J. Clin. Gastroenterol. 1988; 10:76-80.

8. Larson AM. Acetaminophen hepatotoxicity. Clin Liver Dis. 2007; 11: 525-548.

9. Rumack BH. Acetaminophen hepatotoxicity: the first 35 years. J Toxicol Clin Toxicol. 2002; 40: 3-20.

10. Nelson SD. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin. Liver Dis. 1990; 10: 267-278.

11. Lores Arnaiz S, Llesuy S, Cutrin JC, Boveris A. Oxidative stress by acute acetaminophen administration in mouse liver. Free Radic Biol Med. 1995; 19: 303-310.

12. Yamada T, Ludwig S, Kuhlenkanip J, Kaplowitz N. Direct Protection Against Acetaminophen Hepatotoxicity by Propyl-thiouracil. J Clin Invest. 1988; 67: 688-695.

13. Savides MC, Oehne FW. Acetaminophen and its toxicity. J App Toxicol. 1983; 3: 95-111.

14. Hoffmann KJ, Streeter AJ, Axworthy DB, Baillie TA. Identification of the major covalent adduct formed in vitro and in vivo between acetaminophen and mouse liver proteins. Mol Pharmacol. 1985; 27:  566-573.

15. Vermeulen NPE, Bessems JGM, Van de Streat R. Molecular aspects of paracetamol-induced hepatotoxicity and its mechanism based prevention. Drug Met Rev. 1992; 24: 367-407.

16. Jaeschke H, Knight TR, Bajt ML. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett. 2003; 144: 279-288.

17. Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 2006; 89: 31-41.

18. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 1995; 333: 1118-1127.

19. Goel A, Sharma K. Plant Extracts and Phytochemicals as Herbal Medicines and Antimicrobials. Int J Biol Med Res. 2014; 5: 3940-3946.

20. Harborne JB.  Phytochemicals methods. A guide to modern techniques of plant analysis, 3 rd Edn. Chapman and Hall Co, Newyork, 1998; 1-302.

21. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutrition Biochem. 2002; 13: 572-584.

22. Chattopadhyay RR. Possible mechanism of hepatoprotective activity of Azadira-chta indica leaf extract: part II. J Ethnopharmacol. 2003; 89: 217-219.

23. Sadik CD, Sies H, Schewe T. Inhibition of 15-lipoxyigenase by flavonoids: structure-activity relations and mode of action. Biochem Pharmacol. 2003; 65: 773-781.

24. Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS. Flavonoids in food and their health benefits. Plant Foods Hum Nutr. 2004; 59: 113-122.

25. Sadhu SK, Okuyama E, Fujimoto H, Ishibashi M, Yesilada E. Prostaglandin inhibitory and antioxidant components of Cistus laurifolius, a Turkish medicinal plant. J  Ethnopharmacol. 2006; 108: 371-378.

26. Wagner GM. Azolla: a review of its biology and utilization. Botanical rev. 1997; 63: 1-26.

27. Abraham G, Vidhu A. A preliminary examination of the phytochemical profile of Azolla microphylla with respect to Seasons. Asian Pacific J Trop Biomed. 2012; 2: S1392-S1395.

28. Becerra M, Preston TR, Ogle B. Effect of replacing whole boiled soya beans with Azolla in the diets of growing ducks. Livestock Res. Rural Develop. 1995; 7: 1-10.

29. Lumpkin TA, Plucknett DL. Azolla as a green manure: Use and management in crop production. West view Press, Boulder, Colorado, 1982.

30. Van Hove C, Lopez Y. Fisiologia de Azolla. In: Workshop on the assessment of Azolla use in tropical Latin America. Chicklayo: Peru, 1982. 

31. Selvaraj K, Chowdhury R, Bhattacharjee C. Isolation and structural elucidation of flavonoids from aquatic fern Azolla microphylla and evaluation of free radical scavenging activity. Int J Pharm Sci. 2013; 5: 743-749.

32. Gratzel M. Photoelectrochemical cells. Nature 2001; 414: 338–344.

33. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mate. 2003; 15: 353–389.

34. Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C. Biological synthesis of inorganic nanoparticles by microorganisms. Chem Eng and Technol. 2009; 32(7): 1026–1035.

35. Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E: Low-dimension. Sys and Nanostruc. 2010; 42(5): 1417–1424.

36. Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J of Colloid and Inter Sci. 2004; 275(2): 496–502.

37. BarathManiKanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn HS, Eom SH, Gurunathan S. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol. 2010; 8: 1-15.

38. Prieto PM, Pineda, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 1999; 269: 337-341.

39. Morales MA, Jobbagy AJ, Terenzi HF. Mutations affecting accumulation of glycogen. Neurospora News Lett. 1973; 0: 24-25.

40. Natio HK. Cholesterol. In: Kaplan A et al (eds) Clinical Chemistry. The C. V. Mosby Co. St Louis, Toronoto, Princeton, 1984; 437: 1194-1206.

41. Buccolo G. Quantitative determination of serum triglycerides by use of enzymes. Clin Chem. 1973; 19: 476-482.

42. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265-275.

43. Gendler S. Proteins in clinical chemistry: Theory, Analysis and Co-relation, Kaplan LA. and Pesce. AJ., Eds. Mosby C.V., Toranto, 1984; 1268-1327.

44. Jendrassik L, Grof P Vereinfachte. Photometrische Methoden zur Bestimmung des Blubilirubins. Biochem A,  1938; 297: 81-89.

45. Spencer K. Analytical reviews in clinical biochemistry: The estimation of creatinine. Ann Clin Biochem. 1986; 23: 1-25.

46. AOAC Official methods of analysis, 13th edn. Association of Official Analytic Chemists, Washington DC, 1980; 376-384.

47. Marklund S, Marklund G. Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974; 47: 469-474.

48. Chance B, Maehly AC. Assay of catalase and peroxidases. Methods Enzymol. 1955; 11: 764-775.

49. Mohandas J, Marshal JJ, Duggin GG, Horvath JS, Tiller DJ. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem Pharmacol. 1984; 33: 1801-1807.

50. Rajasekar P, Anuradha CV. Fructose-induced hepatic gluconeogenesis: effect of L-carnitine. Life Sci. 2006; 80:1176-1183.

51. Ellman GL. Tissue Sulfhydrl groups. Arch Biochem Biophysics. 1959; 82: 70-7758.

52. Uchiyama M, Mihara M. Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86: 271-278.

53. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95: 351-358.

54. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shallttiel S, Stadtman ER. Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol. 1990; 186: 464-478.

55. Sedlak J, Lindsay RH. Estimation of total, protein-bound and non-protein sulfhydryl groups in tissue with Ellmans reagent. Anal Biochem. 1968; 25: 192-205.

56. Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanoscience. 2013; 3:145-151.

57. Tiwari PM, Vig K, Dennis VA, Singh SS. Functionalized gold nanoparticles and their biomedical applications. Nanomat 2011; 1: 31-63.

58. El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: An overview. J Toxicol. 2009; 754810: 1-9.

59. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005; 1: 325-327.

60. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008; 60: 1307-1315.

61. Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Contr Release. 2009; 149: 65-71.

62. Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extracts and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed. 2012; 7: 1189-1202.

63. Chen YP, Dai ZH, Liu PC, Chuu JJ, Lee KY, Lee SL, Chen YJ.  Effects of nanogold on the alleviation of carbon tetrachloride-induced hepatic injury in rats. Chinese J Physiol. 2012; 55: 1-5.

64. Wonkchalee O, Boonmars T, Aromdee C, Laummaunwai P, Khunkitti W, Vaeteewoottacharn K, Sriraj P, Aukkanimart R, Loilome W, Chamgramol Y, Pairojkul C, Wu Z, Juasook A, Sudsarn P. Anti-inflammatory, antioxidant and hepatoprotective effects of Thunbergia laurifolia Linn. on experimental opisthorchiasis. Parasitol Res. 2012; 111: 353-359.

65. Lee WM. Acetaminophen and the US acute liver failure study group: lowering the risks of hepatic failure. Hepatol. 2004; 40: 6-9.

66. James LP, Mayeux PR, Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos. 2003; 31: 1499-1506.

67. Hart SG, Beierschmitt WP, Wyand DS, Khairallah EA. Acetaminophen toxicity in CD-0 mice. I. Evidence of a role for in situ activation in selective covalent binding and toxicity. Toxicol. Appl Pharmacol. 1994; 126: 267-275.

68. Mitchell JR, Jollow DJ, Potter WZ, Gillette JR. Acetaminophen induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Therap. 1973; 187: 211-217.

69. Pessayre D, Dolder A, Artigou JY, Wandscher JC. Effect of fasting on metabolite–mediated hepatotoxicity in the rat. Gastroenterol. 1979; 77: 264-271.

70. Bellomo G, Jewell SA, Thor H, Orrenius S. Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide. Proc Natl Acad Sci USA. 1982; 79: 6842-6846.

71. Beatrice MC, Stiers DL, Pfeiffer DR. The role of glutathione in the retention of calcium by liver mitochondria. J Biol Chem. 1984; 259: 1279-1287.

72. Gill TS, Tewari H, Pande J. Use of fish enzyme system in monitoring water quality: effects of mercury on tissue enzymes. Comp Biochem Physiol. 1990; 97C: 287-292.

73. Bhattacharya HSC, Zhang, Wang YJ. Embryonic development of the rosy barb Puntius conchonius Hamilton 1822 (Cyprinidae). Trop. Zool. 2005; 18: 25-37.

74. Kavitha P, Ramesh R, Bupesh G, Stalin A, Subramanian P. Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus). In Vitro Cell Dev Biol-Animal, 2011; 47: 698-706.

75. ShobhaRani ARS, Reddy TN, Raju. Alterations in the levels of dehydrogenases in a fresh water fish. Tilapia mossmbica exposed to arsenite toxicity. Ind. J. Environ. Health, 2000; 42: 130-133.

76. Naqshbandi A, Khan MW, Rizwan S, Yusufi ANK, Khan F. Studies on the protective effect of fish oil against cisplatin induced hepatotoxicity.  Biol Med. 2011; 3: 86-97.

77. Ahmed MB, Khater MR. Evaluation of the protective potential of Ambrosia maritime extract on acetaminophen-induced liver damage. J Ethnopharmacol. 2001; 75: 169-174.

78. Kumar G, Banu GS, Pappa PV, Sundararajan M, Pandian MR. Hepatoprotective activity of Trianthema portulacastrum L. against paracetamol and thioacetamide intoxication in albino rats. J Ethnopharmacol. 2004; 92: 37-40.

79. Senthilkumar N, Badami S, Dongre HS, Bhojraj S. Antioxidant and hepatoprotective activity of the methanol extract of Careya arborea bark in Ehrlich ascites carcinoma-bearing mice. J Nat Med. 2008; 62: 336-339.

80. Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Rad Res. 2000; 33: S99-S108.

81. Alderman CJ, Shah S, Foreman JC, Chain BM, Katz DR. The role of advanced oxidation protein products in regulation of dendritic cell function. Free Rad Biol Med. 2002; 32: 377-385.

82. Abraham P. Vitamin C may be beneficial in the prevention of paracetamol-induced renal damage. Clin Exp Naphrol. 2005; 9: 24-30.

83. Vengerovskii AI, Melent’eva AN, Burkova VN. Hepatoprotective and antioxidant actions of an extract of Russian thistle in paracetamol hepatitis in rats. Pharm Chem. J.  2010; 44: 138-140.

84. Asha VV, Akhila S, Wills PJ, Subramoniam A. Further studies on the antihepatotoxic activity of Phyllanthus maderaspatensis Linn. J Ethnopharmacol. 2004; 92: 67-70.

85. Bananee M, Mirvaghefi AR, Rafei GR, MajaziAmiri B. Effects of sub-lethal diazinon concentrations on blood plasma biochemistry of common carp. Int J Environ Res. 2008; 2:189-198.

86. Martin P, Friedman LS. Assessment of liver function and diagnostic studies. In: Freidman, LS., Keefe, EB. (Eds.), Hand Book of Liver Disease. Churchill Livingstone, Philadelphia, 1992.

87. Ravikumar V, Shivashangari KS, Devaki T. Hepatoprotective activity of Tridax procumbens against D-galactosamine/lipopolysaccharide-induced hepatitis in rats. J Ethnopharmacol. 2005; 101: 55-60.

88. Vutukuru SS, Chintada S, Radha MKR, Venkateswara J, Anjaneyulu Y. Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiol Biochem. 2006; 32: 221-229.

89. Mate’s JM, Sa’nchez-Jime’nez F. Antioxidant enzymes and their implications in pathology process. Front Biosci. 1999; 4: 339-345.

90. Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Rad Biol Med. 2001; 30: 463-488.

91. Sumioka I, Matsura T, Kasuga S, Itakura Y, Yamada K. Mechanisms of protection by S-allylmercaptocystein against acetaminophen-induced liver injury in mice. Jpn J Pharmacol. 1998; 78: 199-207.

92. Amimoto T, Matsura T, Koyama S, Nakanishi T, Yamada K, Kajiyama G. Acetaminophen-induced hepatic injury in mice: the role of lipid peroxidation and effects of pretreatment with coenzyme Q10 and α- tocopherol. Free Rad Biol Med. 1995; 19: 169-176.

93. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicol. 2008; 245: 194-205.

94. Sun Y, Oberley L.W, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem.  1988; 34: 497-500.

95. Han D, Hanawa N, Saberi B, Kaplowitz N. Mechanisms of Liver Injury. III. Role of glutathione redox status in liver injury. Am. J. Phy. Gastrointestinal and Liver Physiol. 2006; 291: G1-G7.

96. Sancho E, Ferna’ndez-Vega C, Ferrando MD, Andreu-Molinar E. Eel ATPase activity as biomarker of thiobencarb exposure. Ecotoxicol Environ Safe. 2003; 56: 434-441.

97. Kirschner LB. The mechanisms of sodium chloride uptake in hyper regulating aquatic animals. J Exper Biol. 2004; 207:1439-1452.

98. George J. Mineral metabolism in dimethylnitrosamine-induced hepatic fibrosis. Clin Biochem. 2006; 39:984-991.

99. Pounds JG, Rosen JF. Cellular Ca2+ homeostasis and Ca2+ mediated cell processes as critical targets for toxicant action: Conceptual and methodological pitfalls. Toxicol Appl Pharmacol. 1988; 94: 331-341.

100. Nicotera P, Bellomo G, Orrenius S. The role of Ca2+ in cell killing. Chem Res Toxicol. 1990; 3: 484-494.