1. Pankhurst QA, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003; 36(13): R167.
2. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005; 26(18): 3995-4021.
3. Shafi KV, Ulman A, Yan X, Yang N-L, Estournes C, White H, et al. Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir. 2001; 17(16): 5093-7.
4. Fried T, Shemer G, Markovich G. Ordered Two‐Dimensional Arrays of Ferrite Nanoparticles. Adv Mater. 2001; 13(15): 1158-61.
5. Mai TTT, Ha PT, Pham HN, Le TTH, Pham HL, Phan TBH, et al. Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment. Adv Nat Sci: Nanosci Nanotechnol. 2012; 3(1): 015006.
6. Ali I, Salim K, A Rather M, A Wani W, Haque A. Advances in nano drugs for cancer chemotherapy. Current cancer drug targets. 2011; 11(2): 135-46.
7. Shenoy DB, Amiji MM. Poly (ethylene oxide)-modified poly (ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm. 2005; 293(1): 261-70.
8. Safra T, Muggia F, Jeffers S, Tsao-Wei D, Groshen S, Lyass O, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000; 11(8): 1029-33.
9. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008; 5(4): 505-15.
10. Grassi-Schultheiss P, Heller F, Dobson J. Analysis of magnetic material in the human heart, spleen and liver. Biometals. 1997; 10(4): 351-5.
11. Hu F, Neoh K, Kang E. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials. 2006; 27(33): 5725-33.
12. DerMarderosian A, Beutler JA. The review of natural products: the most complete source of natural product information: Facts and Comparisons; 2002.
13. Evans W. Trease and Evans pharmacognosy (2002). WB Saunders, China.193-407.
14. Das SK, Mukherjee S, Vasudevan D. Medicinal properties of milk thistle with special reference to silymarin: An overview. Nat Prod Rad. 2008; 7: 182-92.
15. Kshirsagar A, Ingawale D, Ashok P, Vyawahare N. Silymarin: a comprehensive review. Pharmacogn Rev. 2009;3(5):116-24.
16. Blumenthal M, Goldberg A, Brinckmann J. Herbal Medicine. Expanded Commission E monographs: Integrative Medicine Communications; 2000.
17. Comoglio A, Tomasi A, Malandrino S, Poli G, Albano E. Scavenging effect of silipide, a new silybin-phospholipid complex, on ethanol-derived free radicals. Biochem Pharmacol. 1995; 50(8): 1313-6.
18. Giacomelli S, Gallo D, Apollonio P, Ferlini C, Distefano M, Morazzoni P, et al. Silybin and its bioavailable phospholipid complex (IdB 1016) potentiate in vitro and in vivo the activity of cisplatin. Life Sci. 2002; 70(12): 1447-59.
19. El-Samaligy M, Afifi N, Mahmoud E. Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int J Pharm. 2006; 308(1): 140-8.
20. Li F-Q, Hu J-H, Jiang Y-Y. Preparation and characterization of solid dispersions of silymarin with polyethylene glycol 6000. Journal of Chinese Pharmaceutical Sciences. 2003;12(2):76-81.
21. Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release. 2001; 70(1): 63-70.
22. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas A, Ithakissios D. PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release. 2002; 79(1): 123-35.
23. Mohammadi-Samani S, Miri R, Salampour M, Khalighian N, Sotoudeh S, Erfani N. Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate. Res Pharm Sci. 2013; 8(1): 25-33.
24. Arsalani N, Fattahi H, Nazarpoor M. Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett. 2010; 4(6): 329-38.
25. Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012; 41(7): 2575-89.
26. Shrifian-Esfahni A, Salehi MT, Esfahani MN, Ekramian E. Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. CHEMIK. 2015; 69( 1): 19–32.
27. Qiang L, Li Z, Zhao T, Zhong S, Wang H, Cui X. Atomic-scale interactions of the interface between chitosan and Fe 3 O 4. Colloids Surf A Physicochem Eng Asp. 2013; 419: 125-32.
28. Saraswathy A, Nazeer SS, Nimi N, Arumugam S, Shenoy SJ, Jayasree RS. Synthesis and characterization of dextran stabilized superparamagnetic iron oxide nanoparticles for in vivo MR imaging of liver fibrosis. Carbohydr Polym. 2014;101:760-8.
29. Ma X, Gong A, Chen B, Zheng J, Chen T, Shen Z, et al. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. Colloids Surf B Biointerfaces. 2015; 126: 44-9.