Functionalization of carbon nanotubes and its application in nanomedicine: A review

Document Type: Review Paper


1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran



This review focuses on the latest developments in applications of carbon nanotubes (CNTs) in medicine. A brief history of CNTs and a general introduction to the field are presented.
Then, surface modification of CNTs that makes them ideal for use in medical applications is highlighted. Examples of common applications, including cell penetration, drug delivery, gene delivery and imaging, are given. At the same time, there are concerns about their possible adverse effects on human health, since there is evidence that exposure to CNTs induces toxic effects in experimental models. However, CNTs are not a single substance but a growing family of different materials possibly eliciting different biological responses. As a consequence, the hazards associated with the exposure of humans to the different forms of CNTs may be different. Understanding the structure–toxicity relationships would help towards the assessment of the risk related to these materials. Finally, toxicity of CNTs, are discussed. This review article overviews the most recent applications of CNTs in Nanomedicine, covering the period from 1991 to early 2015.


1. Iijima S. Helical Microtubules of Graphitic Carbon. Nature. 1991; 354(6348): 56-58.

2. Ouyang M, Huang J L, Lieber CM. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys Rev Lett. 2002; 88(6): 066804.

3. Zare K, Najafi F, Sadegh H. Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J Nanostruc Chem. 2013; 3(1): 1-8.

4. Thostenson ET, Ren Z F, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001; 61(13): 1899-1912.

5. Troiani HE, Miki-Yoshida M, Camacho-Bragado GA, Marques MAL, Rubio A, Ascencio JA,  Jose-Yacaman M. Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level. Nano Lett. 2003; 3(6): 751-755.

6. Wan XG, Dong JM, Xing DY. Optical properties of carbon nanotubes. Phys Rev B. 1998; 58(11): 6756-6759.

7. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Bianco A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol. 2007; 2(2): 108-113.

8. Sadegh H, Shahryari-ghoshekandi R, Kazemi M. Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int Nano Lett. 2014; 4(4): 129-135.

9. Sadegh H, Shahryari-ghoshekandi R, Agarwal S, Tyagi I, Asif M, Gupta VK. Microwave-assisted removal of malachite green by carboxylate functionalized multi-walled carbon nanotubes: Kinetics and equilibrium study. J Mol Liq. 2015; 206: 151-158.

10. Ando Y. Carbon nanotube: the inside story. J Nanosci Nanotechnol. 2010; 10(6): 3726-3738.

11. Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J Am Chem Soc. 2001; 123: 3838–3839.

12. Zare K, Gupta VK, Moradi O, Makhlouf ASH, Sillanpää M, Nadagouda MN, Sadegh H, Shahryari-ghoshekandi R, Pal A, Wang Z, Tyagi I, Kazemi M. A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. J Nanostruc Chem. 2015; 5(2): 227-236.

13. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C. Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett. 2003; 3: 727–730.

14. Xin H, Woolley AT. DNAtemplated nanotube localization. J Am Chem Soc. 2003; 125: 8710-8711.

15. Taft BJ, Lazareck AD, Withey GD, Yin A, Xu JM, Kelley SO. Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J Am Chem Soc. 2004; 126: 12750-12751.

16. Gupta VK, Tyagi I, Agarwal S, Moradi O, Sadegh H, Shahryari-ghoshekandi R, Makhlouf ASH, Goodarzi M, Garshasbi A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification-A review. Crit Rev Env Sci Technol  (Accepted for publish) DOI:10.1080/10643389.2015.1061874 (2015).

17. Liu L, Wang T, Li J, Guo Z, Dai L, Zhang D, Zhu D. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem Phys Lett. 2003; 367: 747-752.

18. Cao L, Chen H, Wang M, Sun J, Zhang X, Kong F. Photoconductivity study of modified carbon nanotube/ oxotitanium phthalocyanine composites. J Phys Chem B. 2002; 106: 8971-8975.

19. Wang X, Liu Y, Qiu W, Zhu D. Immobilization of tetra-tertbutylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials. J Mater Chem. 2002; 12: 1636-1639.

20. Cao L, Chen HZ, Zhou HB, Zhu L, Sun JZ, Zhang XB, Xu JM, Wang M. Carbon nanotube templated assembly of rare-earth phthalocyanine nanowires. Adv Mater. 2003; 15: 909-913.

21. Guldi DM, Rahman GNA, Ramey J, Marcaccio M, Paolucci D, Paolucci F, Qin S, Ford WT, Balbinot D, Jux N, Tagmatarchis N, Prato M. Donor–acceptor nanoensembles of soluble carbon nanotubes. Chem Commun. 2004; 2034-2035.

22. Guldi DM, Rahman GMA, Prato M, Jux N, Qin S, Ford W. Single-wall carbon nanotubes as integrative building blocks for solarenergy conversion.  Angew Chem Int Ed. 2005; 44: 2015-2018.

23. Murakami H, Nomura T, Nakashima N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin–nanotube nanocomposites. Chem Phys Lett. 2003; 378: 481-485.

24. Li H, Zhou B, Lin Y, Gu L, Wang W, Fernando KAS, Kumar S, Allard LF, Sun YP. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc. 2004; 126: 1014-1015.

25. Chen J, Collier CP. Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J Phys Chem B. 2005; 109: 7605-7609.

26. Satake A, Miyajima Y, Kobuke Y. Porphyrin–carbon nanotube composites formed by noncovalent polymer wrapping. Chem Mater. 2005; 17: 716-724.

27. Guldi DM, Rahman GMA, Jux N, Tagmatarchis N, Prato M. Integrating single-wall carbon nanotubes into donor–acceptor nanohybrids. Angew Chem Int Ed. 2004; 43: 5526-5530.

28. Guldi DM, Rahman GMA, Jux N, Balbinot D, Tagmatarchis N, Prato M. Multiwalled carbon nanotubes in donor–acceptor nanohybrids – towards long-lived electron transfer products. Chem Commun. 2005; 2038-2040.

29. Guldi DM, Taieb H, Rahman GMA, Tagmatarchis N, Prato M. Novel photoactive single-walled carbon nanotube–porphyrin polymer wraps: efficient and long-lived intracomplex charge separation. Adv Mater. 2005; 17: 871-875.

30. Guldi DM, Rahman GMA, Jux N, Balbinot D, Hartnagel U, Tagmatarchis N, Prato M. Functional single-wall carbon nanotube nanohybrids-associating SWCNTs with water-soluble enzyme model systems J Am Chem Soc. 2005; 127: 9830-9838.

31. Chichak KS, Star A, Altoe MVP, Stoddart JF. Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry. Small. 2005; 1: 452-461.

32. Tang BZ, Xu H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromol. 1999; 32: 2569-2576.

33. Romero DB, Carrard M, Heer W, Zuppiroli L. A carbon nanotube/organic semiconducting polymer heterojunction. Adv Mater. 1996; 8: 899-902.

34. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater.1999; 11: 1281-1285.

35. Moradi O, Sadegh H, Shahryari-Ghoshekandi R, Norouzi M. Application of carbon nanotubes in nanomedicine: new medical approach for tomorrow. In: Soni, S., Salhotra, A., Suar, M. (eds.) Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering, pp. 90–128. (2015). doi:10.4018/978-1-4666-6363-3.ch006. Accessed 16 Jan 2015

36. Ago H, Shaffer MSP, Ginger DS, Windle AH, Friend RH. Electronic interaction between photoexcited poly( p-phenylene vinylene) and carbon nanotubes. Phys Rev B. 2000; 61: 2286-2290.

37. Wery J, Aarab H, Lefrant S, Faulques E, Mulazzi E, Perego R. Photoexcitations in composites of poly(paraphenylene vinylene) and single-walled carbon nanotubes. Phys Rev B. 2003; 67(11): 115202.

38. Fournet P, Coleman JN, Lahr B, Drury A, Blau WJ, O’Brien DF, Horhold HH. Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J Appl Phys. 2001; 90: 969-975.

39. Fournet P, O’Brien DF, Coleman JN, Horhold HH, Blau WJ. A carbon nanotube composite as an electron transport layer for M3EH-PPV based lightemitting diodes. Synth. Met. 2001; 121: 1683-1684.

40. Moradi O, Gupta VK, Agarwal S, Tyagi I, Asif M, Makhlouf ASH, Sadegh H, Shahryari-ghoshekandi R. Characteristics and electrical conductivity of graphene and graphene oxide for adsorption of cationic dyes from liquids: Kinetic and thermodynamic study. J Ind Eng Chem. 2015; 28: 294-301.

41. Coleman JN, Dalton AB, Curran S, Rubio A, Davey AP, Drury A, McCarthy B, Lahr B, Ajayan PM, Roth S, Barklie RC, Blau WJ. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv Mater. 2000; 12: 213-216.

42. Star A, Lu Y, Bradley K, Gruner G. Nanotube optoelectronic memory devices. Nano Lett. 2004; 4: 1587-1591.

43. Murphy R, Coleman JN, Cadek M, McCarthy B, Bent M, Drury A, Barklie RC, Blau WJ. Highyield, nondestructive purification and quantification method for multiwalled carbon nanotubes. J Phys Chem B. 2002; 106: 3087-3091.

44. Coleman JN, O’Brien DF, Dalton AB, McCarthy B, Lahr B, Barklie RC, Blau WJ. Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes. J Chem Phys. 2000; 113: 9788-9793.

45. Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung SW, Choi H, Heath JR. Preparation and properties of polymer-wrapped singlewalled carbon nanotubes. Angew Chem Int Ed. 2001; 40: 1721-1725.

46. Sadegh H, Shahryari-ghoshekandi R, Tyagi I, Agarwal S, Gupta VK. Kinetic and thermodynamic studies for alizarin removal from liquid phase using poly-2-hydroxyethyl methacrylate (PHEMA). J Mol Liq. 2015; 207: 21-27.

47. Star A, Stoddart JF. Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromol. 2002; 35: 7516-7520.

48. Musa I, Baxendale M, Amaratunga GAJ, Eccleston W. Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites. Synth Met. 1999; 102: 1250.

49. Alexandrou I, Kymakis E, Amaratunga GAJ. Polymer- nanotube composites: burying nanotubes improves their field emission properties. Appl Phys Lett. 2002; 80: 1435-1437.

50. Valentini L, Armentano I, Biagiotti J, Frulloni E, Kenny JM, Santucci S. Frequency dependent electrical transport between conjugated polymer and single-walled carbon nanotubes. Diam Rel Mater. 2003; 12: 1601-1609.

51. Kymakis E, Amaratunga GAJ. Single-wall carbon nanotube/ conjugated polymer photovoltaic devices. Appl Phys Lett. 2002; 80: 112-114.

52. Kymakis E, Alexandrou I, Amaratunga GAJ. High opencircuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys. 2003; 93: 1764-1768.

53. Bhattacharyya S, Kymakis E, Amaratunga GAJ. Photovoltaic properties of dye functionalized single-wall carbon nanotube/ conjugated polymer devices. Chem Mater. 2004; 16: 4819-4823.

54. Landi BJ, Raffaelle RP, Castro SL, Bailey SG. Single-wall carbon nanotube-polymer solar cells. Prog Photovolt Res Appl. 2005; 13: 165-172.

55. O’Connell MJ, Boul P, Ericson, LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour JM, Ausman KD, Smalley RE. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett. 2001; 342: 265-271.

56. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003; 3: 269-273.

57. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science. 2003; 300(5620): 775-778.

58. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 2002;  297: 593-596.

59. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003; 3: 1379-1382.

60. Wenseleers W, Vlasov II, Goovaerts E, Obraztsova ED, Lobach AS, Bouwen A. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater. 2004; 14: 1105-1112.

61. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. Structureassigned optical spectra of singlewalled carbon nanotubes. Science. 2002; 298(5602): 2361–2366.

62. Hagen A, Hertel T. Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett. 2003; 3: 383-388.

63. Strano MS, Doorn SK, Haroz EH, Kittrell C, Hauge RH, Smalley RE. Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 2003; 3: 1091-1096.

64. Weisman RB, Bachilo SM. Dependence of optical transition energies on structure for singlewalled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 2003; 3: 1235-1238.

65. Dyke CA, Tour JM. Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett. 2003; 3: 1215-1218.

66. Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giordano GM, Muňoz E, Musselman IH, Baughman RH, Draper RK. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc. 2003; 125: 1770-1777.

67. Zorbas V, Ortiz-Acevedo A, Dalton AB, Yoshida MM, Dieckmann GR, Draper RK, Baughman RH, Jose-Yacaman M, Musselman IH. Preparation and characterization of individual peptidewrapped single-walled carbon nanotubes. J Am Chem Soc. 2004; 126: 7222-7227.

68. Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB, Dieckmann GR, Draper RK, Baughman RH, Musselman IH. Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc. 2005; 127: 12323-12328.

69. Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005; 127: 6021-6026.

70. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003; 2: 338-342.

71. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ. Structurebased carbon nanotube sorting by sequence-dependent DNA assembly. Science. 2003; 302(5650): 1545-1548.

72. Kam NWS, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc. 2005; 127: 12492-12493.

73. Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed. 2002; 41: 1853-1859.

74. Banerjee S, Hemraj-Benny T, Wong SS. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater. 2005; 17: 17-29.

75. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC. Dissolution of single-walled carbon nanotubes. Adv Mater. 1999; 11: 834-840.

76. Kukovecz A, Kramberger C, Holzinger M, Kuzmany H, Schalko J, Mannsberger M, Hirsch A. On the stacking behavior of functionalized single-wall carbon nanotubes. J Phys Chem B. 2002; 106: 6374-6380.

77. Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC. Dissolution of fulllength single-walled carbon nanotubes J Phys Chem B. 2001; 105: 2525-2528.

78. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC. Chemistry of single-walled carbon nanotubes. Acc Chem Res. 2002; 35: 1105-1113.

79. Hiura H, Ebbesen TW, Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv Mater. 1995; 7: 275-276.

80. Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Capillarity-induced filling of carbon nanotubes. Nature. 1993; 361: 333-334.

81. Chen J, Hamon MA, Hu H, ChenY, Rao AM, Eklund PC, Haddon RC. Solution properties of single-walled carbon nanotubes. Science. 1998; 282(5386): 95-98.

82. Lago RM, Tsang SC, Lu KL, Chen YK, Green MLH. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups. Chem Commun. 1995; 1355-1356.

83. Gupta VK, Sadegh H, Yari M, Shahryari Ghoshekandi R, Maazinejad B,  Chahardori M. Removal of ammonium ions from wastewater: A short review in development of efficient methods. Global J Environ Sci Manag. 2015; 1(2): 149-158.

84. Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE. Sensitivity of single wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon. 2001; 39: 1251-1272.

85. Koshio A, Yudasaka M, Zhang M, Iijima SA. simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett. 2001; 1: 361-363.

86. Qin Y, Shi J, Wu W, Li X, Guo Z, Zhu D. Concise route to functionalized carbon nanotubes. J Phys Chem B. 2003; 107: 12899-12901.

87. Chen Y, Haddon RC, Fang S, Rao AM, Eklund PC, Lee WH, Dickey EC, Grulke EA, Pendergrass JC, Chavan A, Haley BE, Smalley RE. Chemical attachment of organic functional groups to single-walled carbon nanotube material. J Mater Res. 1998; 13: 2423-2431.

88. Sun YP, Huang W, Lin Y, Fu K, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL. Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater. 2001; 13: 2864-2869.

89. Fu K, Huang W, Lin Y, Riddle LA, Carroll DL, Sun YP. Defunctionalization of functionalized carbon nanotubes. Nano Lett. 2001; 1: 439-441.

90. Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res. 2002; 35: 1096-1104.

91. Kong H, Gao C, Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc. 2004; 126: 412-413.

92. Gupta VK, Tyagi I, Agarwal S, Sadegh H, Shahryari-ghoshekandi R, Yari M, Yousefi-nejat O. Experimental study of surfaces of hydrogel polymers HEMA, HEMA–EEMA–MA, and PVA as adsorbent for removal of azo dyes from liquid phase. J Mol Liq. 2015; 206: 129-136.

93. Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW, Rao AM, Sun YP. Attaching proteins to carbon nanotubes via diimideactivated amidation. Nano Lett. 2002; 2: 311-314.

94. Kam NWS, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube–protein conjugates into mammalian cells. J Am Chem Soc. 2004; 126: 6850-6851.

95. Yim T, Liu J, Lu Y, Kane RS, Dordick JS. Highly active and stable DNAzyme-carbon nanotube hybrids. J Am Chem Soc. 2005; 127: 12200-12201.

96. Baker SE, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. Nano Lett. 2002; 2: 1413-1417.

97. Hazani M, Naaman R, Hennrich F, Kappes MM. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett. 2003; 3: 153-155.

98. Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C. Nanotechnology: carbon nanotubes with DNA recognition. Nature. 2002; 420: 761.

99. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006; 106: 1105-1136.

100. Jorio A, Dresselhaus G, Dresselhaus MS, Souza M, Dantas MSS, Pimenta MA, Rao AM, Saito R, Liu C, Cheng HM. Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys Rev Lett. 2000; 85: 2617-2620.

101. Holden JM, Zhou P, Bi X, Eklund PC, Bandow S, Jishi RA, Chowdhury KD, Dresselhaus G, Dresselhaus MS. Raman scattering from nanoscale carbons generated in a cobalt-catalyzed carbon plasma. Chem Phys Lett. 1994; 220: 186-191.

102. Bahr JL, Tour JM. Covalent chemistry of single-wall carbon nanotubes. J Mater Chem. 2002; 12; 1952-1958.

103. Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL. Fluorination of single-wall carbon nanotubes. Chem Phys Lett. 1998; 296: 188-194.

104. Mickelson ET, Chiang IW, Zimmerman JL, Boul PJ, Lozano J, Liu J, Smalley RE, Hauge RH, Margrave JL. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J Phys Chem B. 1999; 103: 4318-4322.

105. Boul PJ, Liu J, Mickelson ET, Huffman CB, Ericson LM, Chiang IW, Smith KA, Colbert DT, Hauge RH, Margrave JL, Smalley RE. Reversible sidewall functionalization of buckytubes. Chem Phys Lett. 1999; 310: 367-372.

106. Khabashesku VN, Billups WE, Margrave JL. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc. Chem. Res. 2002; 35: 1087-1095.

107. Holzinger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss R, Jellen F. Sidewall functionalization of carbon nanotubes. Angew Chem Int Ed Engl. 2001; 40: 4002-4005.

108. Bahr JL, Yang J, Kosynkin DV, Broniskowski MJ, Smalley RE, Tour JM. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc. 2001; 123: 6536-6542.

109. Bahr JL, Tour JM. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater. 2001; 13: 3823-3824.

110. Dyke CA, Tour JM. Solvent-free functionalization of carbon nanotubes. J Am Chem Soc. 2003; 125: 1156-1157.

111. Ying Y, Saini RK, Liang F, Sadana AK, Billups WE. Functionalization of carbon nanotubes by free radicals. Org Lett. 2003; 5: 1471-1473.

112. Peng H, Reverdy P, Khabashesku VN, Margrave JL. Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem Comm. 2003; 362-363.

113. Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM. Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization. Science. 2003; 301(5639): 1519-1522.

114. Hamon MA, Itkis ME, Niyogi S, Alvaraez T, Kuper C, Menon M, Haddon RC. Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. J Am Chem Soc. 2001; 123: 11292-11293.

115. Viswanathan G, Chakrapani N, Yang H, Wei B, Chung H, Cho K, Ryu CY, Ajayan PM. Singlestep in situ synthesis of polymergrafted single-wall nanotube composites. J Am Chem Soc. 2003; 125: 9258-9259.

116. Wu W, Zhang S, Li Y, Li J, Lu L, Qin Y, Guo Z, Dai L, Ye C, Zhu D. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer. Macromol. 2003; 36: 6286-6288.

117. Pekker S, Salvetat JP, Jakab E, Bonard JM, Forro L. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J Phys Chem B. 2001; 105: 7938-7943.

118. Tagmatarchis N, Georgakilas V, Prato M, Shinohara H. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem Commun. 2002; 2010-2011.

119. Coleman KS, Bailey SR, Fogden S, Green MLH. Functionalization of single-walled carbon nanotubes via the Bingel reaction. J Am Chem Soc. 2003; 125: 8722-8723.

120. Worsley KA, Moonoosawmy KR, Kruse P. Long-range periodicity in carbon nanotube sidewall functionalization. Nano Lett. 2004; 4: 1541-1546.

121. Moghaddam MJ, Taylor S, Gao M, Huang S, Dai L, McCall MJ. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett. 2004; 4: 89-93.

122. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc. 2002; 124: 760-761.

123. Lu X, Tian F, Xu X, Wang N, Zhang Q. Theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n, n) armchair single-wall carbon nanotubes. J Am Chem Soc. 2003; 125: 10459-10464.

124. Yao Z, Braidy N, Botton GA, Adronov A. Polymerization from the surface of single-walled carbon nanotubes-preparation and characterization of nanocomposites. J Am Chem Soc. 2003; 125: 16015-16024.

125. Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M. Amino acid functionalization of water soluble carbon nanotubes. Chem Commun. 2002; 3050-3051.

126. Georgakilas V, Voulgaris D, Vazquez E, Prato M, Guldi DM, Kukovecz A, Kuzmany H. Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc. 2002; 124: 14318-14319.

127. Pantorotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc. 2003; 125: 6160-6164.

128. Bianco A, Prato M. Can carbon nanotubes be considered useful tools for biological applications?. Adv Mater. 2003; 15: 1765-1768.

129. Chopra N, Majumder M, Hinds BJ. Bifunctional carbon nanotubes by sidewall protection. Adv Funct Mater. 2005; 15: 858-864.

130. Lee KM, Li L, Dai L. Asymmetric end-functionalization of multi-walled carbon nanotubes. J Am Chem Soc. 2005; 127: 4122-4123.

131. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A. Targeted delivery of amphotericin B to cells using functionalized carbon nanotubes. Angew Chem Int Ed. 2005; 44: 6358-6362.

132. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol. 2007; 2: 108-113.

133. Kam NWS, O.Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA. 2005; 102: 11600-11605.

134. Kam NWS, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed. 2006; 45: 577-581.

135. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science. 2006; 311: 508-511.

136. Kateb B, Van Handel M, Zhang LY, Bronikowski MJ, Manohara H, Badie B. Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. NeuroImage. 2007; 37: S9-S17.

137. Rojas-Chapana J, Troszczynska J, Firkowska I, Morsczeck C, Giersig M. Multi-walled carbon nanotubes for plasmid delivery intoEscherichia coli cells. Lab Chip. 2005; 5: 536-539.

138. Liu Q, Chen B,Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009; 9: 1007-1010.

139. Hampel S, Kunze D, Haase D, Krämer K, Rauschenbach M, Ritschel M, Leonhardt A, Thomas J, Oswald S, Hoffmann V, B€uchner B. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine. 2008; 3: 175-182.

140. Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun. 2006; 1182-1184.

141. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med. 2007; 48: 1180-1189.

142. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc. 2007; 129: 8438-8439.

143. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc. 2008; 130: 11467-11476.

144. Ali-Boucetta H, Al-Jamal KH, McCarthy D, Prato M, Bianco A, Kostarelos K. Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun. 2008; 459-461.

145. Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL, Chun Ke P. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 2004; 4: 2473-2477.

146. Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, Zhu T, Roden RBS, Chen Y, Yang R. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res. 2006; 12: 4933-4939.

147. Liu Z, Winters M, Holodniy M, Dai H. siRNA Delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed. 2007; 46: 2023-2027.

148. Shi Kam NW, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc. 2005; 127: 12492-12493.

149. Yang X, Zhang Z, Liu Z, Ma Y, Yang R, Chen Y. Multifunctionalized single-walled carbon nanotubes as tumor cell targeting biological transporters. J Nanopart Res. 2008; 10: 815-822.

150. Wu Y, Phillips JA, Liu H, Yang R, Tan W. Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano. 2008; 2: 2023-2028.

151. Cheung W, Pontoriero F, Taratula O, Chen AM, He H. DNA and carbon nanotubes as medicine. Adv Drug Delivery Rev. 2010; 62(6): 633-649.

152. Li X, Peng Y, Ren J, Qu X. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc Nat Acad Sci USA. 2006; 103: 19658-19663.

153. Zhao C, Peng Y, Song Y, Ren J, Qu X. Self-assembly of singlestranded RNA on carbon nanotube: polyadenylic acid to form a duplex structure. Small. 2008; 4: 656-661.

154. Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A. Immunization with peptidefunctionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003; 10: 961.

155. Meng J, Meng J, Duan J, Kong H, Li L,Wang C, Xie S, Chen S, Gu N, Xu H, Yang XD. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small. 2008; 4: 1364-1370.

156. Shao N, Lu S, Wickstrom E, Panchapakesan B. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotech. 2007; 18: 315101-315110.

157. Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer. 2007; 111: 2654-2665.

158. Murugesan S, Shaker A, Mousa SA, O’Connor LJ, Lincoln DW, Linhardt RJ. Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. FEBS Lett. 2007; 581: 1157-1160.

159. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005; 5: 1107-1110.

160. Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci. 2007; 27: 6931-6936.

161. Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 2009; 4: 126-133.

162. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 2008; 3: 434-439.

163. Kam NWS, Jan E, Kotov NA. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett. 2009; 9: 273-278.

164. Massobrio G, Massobrio P, Martinoia S. Modeling the neuroncarbon nanotube-ISFET junction to investigate the electrophysiological neuronalactivity. Nano Lett. 2008; 8: 4433-4440.

165. Malarkey EB, Reyes RC, Zhao B, Haddon RC, Parpura V. Water soluble single-walled carbon nanotubes inhibit stimulated endocytosis in neurone. Nano Lett. 2008; 8: 3538-3542.

166. Bardi G, Tognini P, Ciofani G, Raffa V, Costa M, Pizzorusso T. Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons in vivo and in vitro. NNMB. 2009; 5: 96-104.

167. Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, Fubini B. Reactivity of carbon nanotubes: free radical generation or scavenging activity?. Free Radic Biol Med. 2006; 40: 1227-1233.

168. Lucente-Schultz RM, Moore VC, Leonard AD, Price BK, Kosynkin DV, Lu M, Partha R, Conyers JL, Tour JM. Antioxidant singlewalled carbon nanotubes. J Am Chem Soc. 2009; 131: 3934-3941.

169. Ye SF,Wu YH, Hou ZQ, Zhang QQ. ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun. 2009; 379: 643-648.

170. Cherukuri P, Bachino SM, Litovsky SH, Weisman RB. Nearinfrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc. 2004; 126: 15638-15639.

171. Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman, RB. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA. 2006; 103: 18882-18886.

172. Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Beckingham KM, Weisman RB. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett. 2007; 7: 2650-2654.

173. Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single-walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008; 8: 586-590.

174. Zhang S, Sun D, Li X, Pei F, Liu S. Synthesis and solvent enhanced relaxation property of water-soluble endohedral metallofullerenes. Fullerene Sci Tech. 1997; 5: 1635-1643.

175. Bolskar RD, Alford JM. Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem Commun. 2003; 11: 1292-1293.

176. Bolskar RD, Benedetto AF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson LJ, Alford JM. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc. 2003; 125: 5471-5478.

177. Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tóth E, Helm L, Merbach AE, Wilson LJ. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun. 2005; 31: 3915-3917.

178. Ashcroft JM, Hartman KB, Kissell KR, Mackeyev Y, Pheasant S, Young S, Van der Heide PAW, Mikos AG, Wilson, LJ. Single-molecule I2@US-tube nanocapsules: A new X-ray contrastagent design. Adv Mater. 2007; 19: 573-576.

179. Hartman KB, Laus S, Bolskar RD, Muthupillai R, Helm L, Tóth E, Merbach AE, Wilson LJ. Gadonanotubes as ultrasensitive pHsmart probes for magnetic resonance imaging. Nano Lett. 2008; 8: 415-419.

180. Faraj AA, Cieslar K, Lacroix G, Gaillard S, Canet-Soulas E, Cremillieux Y. In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett. 2009; 9: 1023-1027.

181. Richard C, Doan BT, Beloeil JC, Bessodes M, Tóth E, Scherman D. Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: Toward powerful T1 and T2 MRI contrast agents. Nano Lett. 2008; 8: 232-236.

182. Stafiej A Pyrzynska K. Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol. 2007; 58: 49-52.

183. Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ. Lead adsorption on carbon nanotubes. Chem Phys Lett. 2002; 357: 263-266.

184. Long RQ Yang RT. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc. 2001; 123: 2058-2059.

185. Wang X, Chen C, Hu W, Ding A, Xu D, Zhou X. Sorption of Am(III) to multiwall carbon nanotubes. Environ Sci Technol. 2005; 39: 2856-2860.

186. Shahryari-ghoshekandi R, Sadegh H. Kinetic study of the adsorption of synthetic dyes on graphene surfaces. Jordan J Chem. 2014; 9(4): 267-278.

187. Belloni F, Kutahyali C, Rondinella VV, Carbol P, Wiss T, Mangione A. Can carbon nanotubes play a role in the field of nuclear waste management?. Environ Sci Technol. 2009; 43: 1250-1255.

188. Akasaka T, Watari F. Capture of bacteria by flexible carbon nanotubes. Acta Biomater. 2009; 5: 607-612.

189. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowskab U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007; 168: 121-131.

190. Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Piñero E, Beguin F, Fonseca A, Nagy JB, Lison D, Fubini B. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Physicochemical aspects. Chem Res Toxicol. 2008; 21: 1690-1697.

191. Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, Raymundo- Piñero E, Beguin F, Kirsch-Volders M, Fenoglio I, Fubini B, Lison D. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol. 2008; 21: 1698-1705.

192. Tabet L, Bussy C, Amara N, Setyan A, Grodet A, Rossi MJ, Pairon JC, Boczkowski J, Lanone S. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J Toxicol Environ Health A. 2009; 72: 60-73.

193. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowskab U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007; 168: 121-131.

194. Guo J, Zhang X, Zhang S, ZhuY, Li W. The different bio-effects of functionalized multi-walled carbon nanotubes on Tetrahymena pyriformis. Curr Nanosci. 2008; 4: 240-245.

195. Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC, Tang XS. Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol. 2008; 3: 347-351.

196. Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G. Multi-walled carbon nanotubes: lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett. 2009; 184: 192-197.

197. Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis. 2008; 29: 427-433.

198. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K. Nano-aggregates of single-walled graphitic carbon nanohorns. Chem Phys Lett. 1999; 309: 165-170.

199. Yudasaka M, Fan J, Miyawaki J, Iijima S. Studies on the adsorption of organic materials inside thick carbon nanotubes. J Phys Chem B. 2005; 109: 8909-8913.