Synthesis of silver nanoparticles and its synergistic effects in combination with imipenem and two biocides against biofilm producing Acinetobacter baumannii

Document Type : Research Paper

Authors

1 Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

2 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Objectives:
Biofilms are communities of bacteria attached to surfaces through an external polymeric substances matrix. In the meantime, Acinetobacterbaumannii is the predominant species related to nosocomial infections. In the present study, the effect of silver nanoparticles alone and in combination with biocides and imipenem against planktonic and biofilms of A. baumannii was assessed. 
Materials and Methods:  
Minimum inhibitory concentrations (MICs) of 75 planktonic isolates of A. baumannii were determined by using the microdilution method as described via clinical and laboratory standards institute (CLSI). Among all strains, 10 isolates which formed strong biofilms were selected and exposed to silver nanoparticles alone and in combination with imipenem, bismuth ethandithiol (BisEDT) and bismuth propanedithiol (BisPDT) to determine minimum biofilm inhibitory concentrations (MBIC). Subsequently, minimum biofilm eradication concentrations (MBECs) of silver nanoparticles alone and in combination with imipenem against mature biofilm of the isolates were evaluated. 
Results:
Results showed that 29.3% of isolates were susceptible to silver nanoparticles and could inhibit the growth and eradicate biofilms produced by the isolates. For this reason, ∑FIC, ∑FBIC and ∑FBEC ≤ 0.05 were reported which shows synergism between silver nanoparticles and imipenem against not only planktonic cells but also inhibition and eradication of biofilms. The results of ∑FBIC >2 indicated to antagonistic impacts between silver nanoparticles and BisEDT/BisPDT against biofilms. 
Conclusion:
It can be concluded that silver nanoparticles alone can inhibit biofilm formation but in combination with imipenem are more effective against A. baumannii in planktonic and biofilm forms.

Keywords


1. Panacek A, Kvítek, L., Prucek, R., Kolar, M., Vecerova, R., Pizúrova, N., Sharma, V, K., Nevecna, T., Zboril, R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248-53.
2. Humberto H, L., Garza-Treviño, E, N.,  Ixtepan-Turrent, L., Singh, D, K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology 2011;9(30).
3. Percival SL, Bowler, P.G. and Dolman, J. Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. . Int Wound J. 2007;4(2):186–91.
4. Sondi I, Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram negative bacteria. J Colloid Interface Sci. 2004;275(1):177-82.
5. Morones JR, Elechiguerra, J.L., Camacho, A. and Ramirez, J.T. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16(10):2346–53.
6. Hwang E, T., Lee, J, H., Chae, Y, J., Kim, Y, S., Kim, B, C., Sang, B., Gu, M, B. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small. 2008;4(6):746-50.
7. Kim J, S., Kuk, E., Yu, K,N., Kim, J, H., Park, S, J., Lee, H, J., Kim, S, H., Park, Y, K., Park, Y, H., Hwang, C, Y., Kim, Y, K., Lee, Y, S., Jeong, D, H., Cho, M, H. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95-101.
8. Nel A, Xia, T., Madler, L., Li, N. Toxic Potential of Materials at the Nanolevel. Science. 2006;311(5761):622-7.
9. Batarseh K, I. Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J Antimicrob Chemother. 2004; (54):546-8.
10. Shahverdi A, R., Fakhimi, Ali., Shahverdi, Hamid, R., Minaian, Sara. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine  2007; (3):168-71.
11. Hwang I-s, Hwang, Ji, Hong., Choi, Hyemin., Kim, Keuk-Jun., Lee, Dong, Gun. Synergistic effect with silver nanoparticles and its involved mechanisms. J Med Microbiol. 2012; doi:10.1099/jmm.0.047100-0.
12. Richet H. Nosocomial infections caused by Acinetobacter baumannii: a major threat worldwide. Infect Control Hosp Epidemiol. 2006;27(7):645-6.
13. Rodrguez-Ban o, J., Cisneros, J, M., Fernandez-Cuenca, F., et al. Clinical features and epidemiology of Acinetobacter baumannii colonization and infection in Spanish hospitals. Infect Control Hosp Epidemiol. 2004;25(10):819-24.
14. Stewart P, S., Costerton, J, W. . Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135-8.
15. Vidal R, Dominguez, M., Urrutia, H., Bello, H., Gonzalez, G., Garcia, A. & Zemelman, R. Biofilm formation by Acinetobacter baumannii. Microbios 1996;86(346):49-58.
16. Valappil S, P., Pickup, D, M., Carroll, D, L., Hope, C, K., Pratten, J., Newport, R, J., et al. Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob Agents Chemother 2007;51(12):4453–61.
17. Lewis K. Riddle of biofilm resistance. J Antimicrob Chemother. 2001; (45):999–1007.
18. Hashizume T, Ishinot, F., Nakagawat, J, I., Tamakit , S., Matsuhashit, M. Studies on the mechanism of action of imipenem (N-formimidoylthienamycin) in vitro: binding to the penicillin-binding proteins (PBPs) in Escherichia coli and Pseudomonas aeruginosa, and inhibition of enzyme activities due to the PBPs in E. coli. J Antibiot (Tokyo). 1984;37(4):394-400.
19. Veloira W, G., Domenico, P., Lipuma, J, J., Davis, J, M., Gurzenda, E., Kazzaz, J, A. In vitro activity and synergy of bismuth thiols and tobramycin against Burkholderia cepacia complex. J Antimicrob chemother. 2003; (52):915-9.
20. Gunawardana J. Bismuth-Ethandithiol: a potential drug to threat Biofilm infections of medical devices produced by Staphylococcus aureus and Proteus mirabilis. Florida, USA: Boca Raton; 2003.
21. Shahrokh S, Emtiazi, G. Toxicity and Unusual Biological Behavior of Nanosilver on Gram Positive and Negative Bacteria Assayed by Microtiter-Plate. Europ J Biol Sci 2009;1(3):28-31.
22. Gould I, M., Wilson, D., Milne, K., Paterson, A., Golder, D., Russell, D. Interaction of imipenem with erythromycin and tetracycline assessed by microdilution checkerboard techniques. Antimicrob Agents Chemother. 1991;35(11):2407-9.
23. Abdi-Ali A, Hendiani, S., Mohammadi, P., Gharavi, S. Assessment of Biofilm Formation and Resistance to Imipenem and Ciprofloxacin among Clinical Isolates of Acinetobacter baumannii in Tehran. Jundishapour J Microbiol. 2014;7(1).
24. Stepanovic S, Vukovic, D., Dakic, I., Savic, B., Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J MicrobiolMethods 2000;40(2):175-9.
25. Betsey P, Hamilton , M, A., Zelver, N., Stewart, P, S. . A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Methods 2003;54(2):269-76.
26. Pettit R, K., Weber, C, A., Kean, M, J., Hoffmann, H., Pettit, G, R., Tan, R., Franks, K, S., Horton, M, L. . Microplate Alamar Blue Assay for Staphylococcus epidermidis Biofilm Susceptibility Testing. Antimicrob Agents Chemother. 2005;49(7):2612-7.
27. Dallo S, F., Denno, J., Hong, S., Weitao, T. Adhesion of Acinetobacter baumannii to extracellular proteins detected by a live cell-protein binding assay. Ethn and dis. 2010;20.
28. Sui Z, M., Chen, X., Wang, L, Y., Xu, L, M., Zhuang, W, C., Chai, Y, C., et al. Capping effect of CTAB on positively charged Ag nanoparticles. Physica E. 2006;33(2):308-14.
29. Amro N, A., Kotra, L, P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S, L. High resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 2000;16(6):2789-96.
30. Hong S, H., Jeong, J., Shim, S., Kang, H., Kwon, S., Ahn, K, H., Yoon, J. Effect of electric currents on bacterial detachment and inactivation. Biotechnol Bioeng. 2008;100(2):379-89.
31. Pratik R, Chaudhari, Shalaka, A., Masurkar, Vrishali, B., Shidore, Suresh, Kamble, P. Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation. Nano-Micro Lett 2012;4(1):34-9.
32. Gunawardana J. Bismuth-Ethandithiol: a potential drug to threat Biofilm infections of medical devices produced by Staphylococcus aureus and Proteus mirabilis. Florida, USA: Boca Raton; 2010.