Evaluation of the effect of crocetin on antitumor activity of doxorubicin encapsulated in PLGA nanoparticles

Document Type: Research Paper

Authors

1 Department of Biology, School of Science, Payame Noor University, Mashhad, Iran

2 Biotechnology Section, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

3 Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran

Abstract

Objective(s): The current study reports investigation of codelivery by PLGA nanoparticles (NPs) loaded with crocetin (Cro), a natural carotenoid dicarboxylic acid that is found in the crocus flower, and Doxorubicin (DOX).
Materials and Methods: Double emulsion/solvent evaporation method was used for preparation of PLGA nanoparticles containing Dox and Cro. Characterizations of prepared NPs were investigated by atomic force microscopy (AFM) and dynamic light scattering analysis. In vitro Cytotoxicity of DOX and Cro loaded PLGA NPs (PLGA-DOX-Cro) on MCF-7 cell line was evaluated using MTT test. Flow cytometry experiments were implemented to distinguish cells undergoing apoptosis from those undergoing necrosis. Furthermore the expression of caspase 3 was examined by western blot analysis.
Results: The prepared formulations had size of 150- 300 nm. Furthermore, PLGA-DOX-Cro nanoparticles inhibited MCF-7 tumor cells growth more efficiently than either DOX or Cro alone at the same concentrations, as quantified by MTT assay and flow cytometry. Studies on cellular uptake of DOX-Cro-NPs demonstrated that NPs were effectively taken up by MCF-7 tumor cells.
Conclusion: This study suggested that DOX-Cro-NPs may have promising applications in breast cancer therapy.

Keywords


[1]  Attia AB, Yang C, Tan JP, Gao S, Williams DF, Hedrick JL, Yang YY. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials. 2013; 34(12): 3132-40.

[2]  Tian Y, Mao S. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs. Expert Opin Drug Deliv. 2012; 9(6): 687-700.

[3]  Liu P, Wang Z, Brown S, Kannappan V, Tawari PE, Jiang W, Irache JM, Tang JZ, Armesilla AL, Darling JL, Tang X, Wang W. Liposome encapsulated Disulfiram inhibits NFêB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget. 2014; 5(17): 7471-85.

[4]  Geary SM, Salem AK. Exploiting the tumor phenotype using biodegradable submicron carriers of chemotherapeutic drugs. Crit Rev Oncog. 2014; 19(3-4): 269-80.

5]  Yoon YI, Kwon YS, Cho HS, Heo SH, Park KS, Park SG, Lee SH, Hwang SI, Kim YI, Jae HJ, Ahn GJ, Cho YS, Lee H, Lee HJ, Yoon TJ. Ultrasound-mediated gene and drug delivery using a microbubble-liposome particle system. Theranostics. 2014; 4(11): 1133-44.

[6]  Liu Y, Fang J, Joo KI, Wong MK, Wang P. Codelivery of Chemotherapeutics via Crosslinked Multilamellar Liposomal Vesicles to Overcome Multidrug Resistance in Tumor. PLoS One. 2014; 9(10): e110611.

[7]  Perera Y, Toro ND, Gorovaya L, Fernandez-DE-Cossio J, Farina HG, Perea SE. Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models. Mol Clin Oncol. 2014; 2(6): 935-944.

[8]  Yin T, Wang P, Li J, Wang Y, Zheng B, Zheng R, Cheng D, Shuai X. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials. 2014; 35(22): 5932-43.

[9]  Kanazawa T, Morisaki K, Suzuki S, Takashima Y. Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles. Mol Pharm. 2014; 11(5): 1471-8.

[10] Shi S, Zhu X, Guo Q, Wang Y, Zuo T, Luo F, Qian Z. Self-assembled mPEG-PCL-g-PEI micelles for simultaneous codelivery of chemotherapeutic drugs and DNA: synthesis and characterization in vitro. Int J Nanomedicine. 2012; 7: 1749-59.

[11] Li Y, Liu R, Yang J, Ma G, Zhang Z, Zhang X. Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy. Biomaterials. 2014; 35(36): 9731-45.

[12] Chen Y, Chen H, Shi J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Mol Pharm. 2014; 11(8): 2495-510.

[13] Xu X, Xie K, Zhang XQ, Pridgen EM, Park GY, Cui DS, Shi J, Wu J, Kantoff PW, Lippard SJ, Langer R, Walker GC, Farokhzad OC. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc Natl Acad Sci U S A. 2013; 110(46): 18638-43.

[14] Su X, Wang Z, Li L, Zheng M, Zheng C, Gong P, Zhao P, Ma Y, Tao Q, Cai L. Lipid-polymer nanoparticles encapsulating doxorubicin and 2'-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol Pharm. 2013; 10(5): 1901-9.

[15] Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, Langer R, Farokhzad OC. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A. 2010; 107(42): 17939-44.

[16] Kolate A, Kore G, Lesimple P, Baradia D, Patil S, Hanrahan JW, Misra A. Polymer assisted entrapment of netilmicin in PLGA nanoparticles for sustained antibacterial activity. J Microencapsul. 2014; 19: 1-14.

[17] Mariano RN, Alberti D, Cutrin JC, Geninatti Crich S, Aime S. Design of PLGA Based Nanoparticles for Imaging Guided Applications. Mol Pharm. 2014; 11(11): 4100-6.

[18] Ma YC, Wang JX, Tao W, Qian HS, Yang XZ.v. Polyphosphoester-based nanoparticles with viscous flow core enhanced therapeutic efficacy by improved intracellular drug release. ACS Appl Mater Interfaces. 2014; 6(18): 16174-81.

[19] Fonte P, Soares S, Sousa F, Costa A, Seabra V, Reis S, Sarmento B. Stability Study Perspective of the Effect of Freeze-Drying Using Cryoprotectants on the Structure of Insulin Loaded into PLGA Nanoparticles. Biomacromolecules. 2014; 15(10): 3753-65.

[20] Chittasupho C, Lirdprapamongkol K, Kewsuwan P, Sarisuta N. Targeted delivery of doxorubicin to A549 lung cancer cells by CXCR4 antagonist conjugated PLGA nanoparticles. Eur J Pharm Biopharm. 2014; 88(2): 529-38.

[21] Cryan SA. Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J. 2005; 7(1): E20-41.

[22] Shivakumar P, Rani MU, Reddy AG, Anjaneyulu Y. A study on the toxic effects of Doxorubicin on the histology of certain organs. Toxicol Int. 2012; 19(3): 241-4.

[23] Yan JK, Ma HL, Chen X, Pei JJ, Wang ZB, Wu JY. Self-aggregated nanoparticles of carboxylic curdlan-deoxycholic acid conjugates as a carrier of doxorubicin. Int J Biol Macromol. 2014; 72C: 333-340.

[24] Song Y, Huang Z, Song Y, Tian Q, Liu X, She Z, Jiao J, Lu E, Deng Y. The application of EDTA in drug delivery systems: doxorubicin liposomes loaded via NH4EDTA gradient. Int J Nanomedicine. 2014; 9: 3611-21.

[25 ] Levacheva I, Samsonova O, Tazina E, Beck-Broichsitter M, Levachev S, Strehlow B, Baryshnikova M, Oborotova N, Baryshnikov A, Bakowsky U. Optimized thermosensitive liposomes for selective doxorubicin delivery: formulation development, quality analysis and bioactivity proof. Colloids Surf B Biointerfaces. 2014; 121: 248-56.

[26] Murali R, Vidhya P, Thanikaivelan P. Thermoresponsive magnetic nanoparticle—aminated guar gum hydrogel system for sustained release of doxorubicin hydrochloride. Carbohydr Polym. 2014; 110: 440-5.

[27] Samarghandian S, Borji A. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Res. 2014; 6(2): 99-107.

[28] Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol. 2013; 91(6): 397-403.

[29] Bolhassani A, Khavari A, Bathaie SZ. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochim Biophys Acta. 2014; 1845(1): 20-30.

[30] Bilati U, Allemann E, Doelker E. Poly (D, L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method-processing and formulation issues for enhanced entrapment efficiency. J Microencapsul.. 2005; 22(2): 205-214.

[31] Alibolandi M, Ramezani M, Sadeghi F, Abnous K, Hadizadeh F. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. J Nanopart Res. 2015; 17:76.

[32] Alibolandi M, Ramezani M, Sadeghi F, Abnous K, Hadizadeh F. Epithelial cell adhesion molecule aptamer conjugated PEG–PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. International Journal of Pharmaceutics 2015; 479(1): 241-251.

[33] Misra R, Sahoo SK. Coformulation of Doxorubicin and Curcumin in Poly(d,l-lactide-co-glycolide) Nanoparticles Suppresses the Development of Multidrug Resistance in K562 Cells. Mol. Pharmaceutics 2011; 8: 852–866

[34] Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006; 1(3): 1458-61.

[35] Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248–254. 

[36] Pays K, Giermanska-Kahn J, Pouligny B, Bibette J, Leal-Calderon F. Double emulsions: how does release occur? J Control Release. 2002; 79:193e205.

[37] Okochi H, Nakano M. Preparation and evaluation of W/O/W type emulsions containing vancomycin. Adv Drug Deliv Rev. 2000; 45: 5e26.

[38] Cohen-Sela E, Teitlboim S, Chorny M, Koroukhov N, Danenberg HD, Gao J, Golomb G. Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity. J Pharm Sci. 2009; 98(4): 1452-62.

[39] Masaro L, Zhu X. Physical models of diffusion for polymer solutions, gels and solids. Prog Polym Sci.. 1999; 24(5): 731-75.

[40] Fonseca C, Simões S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release. 2002; 83(2): 273-286.

[41] Bettini R, Colombo P, Peppas NA. Solubility effects on drug transport through pH-sensitive, swelling-controlled release systems: transport of theophylline and metoclopramide monohydrochloride. J Control Release. 1995; 37(1-2): 105–111.

[42] Hong YJ, Yang KS. Anti-inflammatory activities of crocetin derivatives from processed Gardenia jasminoides. Arch Pharm Res. 2013; 36(8): 933-40.

[43] Zhong YJ, Shi F, Zheng XL, Wang Q, Yang L, Sun H, He F, Zhang L, Lin Y, Qin Y, Liao LC, Wang X. Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms. Acta Pharmacol Sin. 2011; 32(12): 1529-36.

[44] Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, Campbell DR, Banerjee SK. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol Cancer Ther. 2009; 8(2): 315-23.

[45] Wang CJ, Lee MJ, Chang MC, Lin JK. Inhibition of tumor promotion in benzo[a]pyrene-initiated CD-1 mouse skin by crocetin. Carcinogenesis. 1995; 16: 187–91. 

[46] Magesh V, DurgaBhavani K, Senthilnathan P, Rajendran P, Sakthisekaran D. In vivo protective effect of crocetin on benzo(a)pyrene-induced lung cancer in Swiss albino mice. Phytother Res. 2009; 23: 533–9. 

[47] Zhong YJ, Shi F, Zheng XL, Wang Q, Yang L, Sun H, He F, Zhang L, Lin Y, Qin Y, Liao LC, Wang X. Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms. Acta Pharmacol Sin. 2011; 32(12): 1529-36.

[48] Li CY, Huang WF, Wang QL, Wang F, Cai E, Hu B, Du JC, Wang J, Chen R, Cai XJ, Feng J, Li HH. Crocetin induces cytotoxicity in colon cancer cells via p53-independent mechanisms. Asian Pac J Cancer Prev. 2012; 13(8): 3757-61.

[49] Sivakumar B, Aswathy RG,  Nagaoka Y,  Iwai S,  Venugopal K, Kato K, Yoshida Y, Maekawa T,  Kumar DNS. Aptamer conjugated theragnostic multifunctional magnetic nanoparticles as a nanoplatform for pancreatic cancer therapy.RSC Adv. 2013; 3: 20579-20598.

[50] Jana SK, Chakravarty B, Chaudhury K. Letrozole and Curcumin Loaded-PLGA Nanoparticles: A Therapeutic Strategy for Endometriosis. Journal of Nanomedicine & Biotherapeutic Discovery 2014; 4:1.

[51] Misra R, Sahoo SK. Coformulation of doxorubicin and curcumin in poly(D,L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol Pharm. 2011; 8(3): 852-66.

[52] Molnár J, Gyémánt N, Tanaka M, Hohmann J, Bergmann-Leitner E, Molnár P, Deli J, Didiziapetris R, Ferreira MJ. Inhibition of multidrug resistance of cancer cells by natural diterpenes, triterpenes and carotenoids. Curr Pharm Des. 2006; 12(3): 287-311.

[53] Nishino H, Murakosh M, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Wada S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, Jinno K. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev. 2002; 21(3-4): 257-64.

[54] Sadhukha T, Prabha S. Encapsulation in nanoparticles improves anti-cancer efficacy of carboplatin. AAPS PharmSciTech 2014; 15(4):1029-38.

[55] Nguyen HT, Tran TH, Kim JO, Yong CS, Nguyen CN. Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-D,L-lactide-co-glycolide (PLGA) nanoparticles. Arch Pharm Res. 2015; 38(5): 716-24.

[56] Sanna V, Roggio AM, Posadino AM, Cossu A, Marceddu S, Mariani A, Alzari V, Uzzau S, Pintus G, Sechi M. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. Nanoscale Res Lett. 2011; 6(1): 260.

[57] Esmaeili F, Dinarvand R, Ghahremani MH, Ostad SN, Esmaily H, Atyabi F. Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly(lactide-co-glycolide) nanoparticles. Anticancer Drugs. 2010; 21(1): 43-52.