[1] Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012; 8(4): 1401-1421.
[2] Verron E, Khairoun I, Guicheux J, Bouler JM. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug DiscovToday. 2010; 15(13): 547-552.
[3] Meseguer Olmo L, Ros Nicolás MJ, Vicente Ortega V, Alcaraz Baños M, Clavel Sainz M, Arcos D, Ragel CV, Vallet Regí M, Meseguer Ortiz C. A bioactive sol gel glass implant for in vivo gentamicin release. Experimental model in Rabbit. J Orthopaed Res. 2006; 24(3): 454-460.
[4] Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng Part B: Reviews. 2013; 19(5): 431-441.
[5] Dion A, Langman M, Hall G, Filiaggi M. Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomaterials. 2005; 26(35): 7276-7285.
[6] Rhee SH. Synthesis of hydroxyapatite via mechanoch- emical treatment. Biomaterials. 2002; 23(4): 1147-1152.
[7] Liu DM, Troczynski T, Hakimi D. Effect of hydrolysis on the phase evolution of water-based sol–gel hydroxyapatite and its application to bioactive coatings. J Mater Sci Mater Med. 2002; 13(7): 657-665.
[8] Gopi D, Indira J, Kavitha L, Sekar M, Mudali UK. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method. Spectrochim Acta Part A. 2012; 93: 131-134.
[9] Guo H, Khor KA, Boey YC, Miao X. Laminated and fun- ctionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering. Biomaterials. 2003; 24(4): 667-675.
[10] Ho WF, Hsu HC, Hsu SK, Hung CW, Wu SC. Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int. 2013; 39(6): 6467-6473.
[11] Bahrololoom ME, Javidi M, Javadpour S, Ma J. Charac- terisation of natural hydroxyapatite extracted from bovine cortical bone ash. J Ceram Process. Res. 2009; 10: 129-138.
[12] Russias J, Saiz E, Nalla RK, Gryn K, Ritchie RO, Tomsia AP. Fabrication and mechanical properties of PLA/HA composites: a study of in vitro degradation. Mate Sci Eng C. 2006; 26(8): 1289-1295.
[13] Mohamadi Y, Mirzadeh H, Moztarzadeh F, Soleimani M, Jabbari E. Design and Fabrication of Biodegadable Porous Chitosan/Gelatin/Tricalcium Phosphate Hybrid Scaffolds for Tissue Engineering. Iran J Polym Sci Technol. (In Persion). 2007; 20: 297-308.
[14] Hsu FY, Tsai SW, Lan CW, Wang YJ. An in vivo study of a bone grafting material consisting of hydroxyapatite and reconstituted collagen. J Mater Sci Mater Med. 2005; 16(4): 341-345.
[15] Zandi M, Mirzadeh H, Mayer C, Urch H, Eslaminejad MB, Bagheri F, Mivehchi H. Biocompatibility evaluation of nano rod hydroxyapatite/gelatin coated with nano HAp as a novel scaffold using mesenchymal stem cells. J Biomed. Mater Res. Part A. 2010; 92(4): 1244-1255.
[16] Xu HH, Smith DT, Simon CG. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials. 2004; 25(19): 4615-4626.
[17] Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg. 2008; 90(Supplement 1): 36-42.
[18] Vincent J. Structural biomaterials. Third edition, Princeton University Press, USA. 2012; 84-86.
[19] LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003; 14(3): 201-209.
[20] Murugan R, Ramakrishna S. Development of nano- composites for bone grafting. Compos Sci Technol. 2005; 65(15): 2385-406.
[21] Chen L, Mccrate JM, Lee JC, Li H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology. 2011; 22(10): 105708.
[22] Tanner KE. Bioactive ceramic-reinforced composites for bone augmentation. J R Soc Interface. 2010; 7(Suppl 5): S541-57.
[23] Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials. 2003; 24(13): 2133-2151.
[24] Liu B, Yang C, Yan X, Wang J, Lv Y. Interaction of avelox with bovine serum albumin and effect of the coexistent drugs on the reaction. Int J Anal Chem. 2012; 2012.
[25] Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly Lactic Acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf. 2010; 9(5): 552-571.
[26] Rose JB, Pacelli S, Haj AJ, Dua HS, Hopkinson A, White LJ, Rose FR. Gelatin-based materials in ocular tissue engineering. Materials. 2014; 7(4): 3106-3135.
[27] Mohammadi Y, Mirzadeh H, Moztarzadeh F, Soleimani M, Jabbari E. Osteogenic Differentiation of Mesenchymal Stem Cells on Novel Three-Dimensional Poly (L-Lactic Acid) /Chitosan/ Gelatin/ Beta- Tricalcium Phosphate Hybrid Scaffolds. Iran Polym J. 2007; 16(1): 57.
[28] Kumaraswamy G. Crystallization of polymers from stressed melts. J Macromol Sci Pol R. 2005; 45(4): 375-397.
[29] Chang MC, Ko CC, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003; 24(17): 2853-2862.
[30] Pradeesh TS, Sunny MC, Varma HK, Ramesh P. Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions. Bull Mater Sci. 2005; 28(5): 383-390.
[31] Tsai SW, Hsu FY, Chen PL. Beads of collagen–nano- hydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta Biomater. 2008; 4(5): 1332-1341.
[32] Chang SH, Hsu YM, Wang YJ, Tsao YP, Tung KY, Wang TY. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. J Mater Sci Mater Med. 2009; 20(1): 23-31.
[33] Kim HW, Yoon BH, Kim HE. Microsphere of apatite-gelatin nanocomposite as bone regenerative filler. J Mater Sci Mater Med. 2005; 16(12): 1105-1109.
[34] Sivakumar M, Manjubala I, Rao KP. Preparation, charact- erization and in-vitro release of gentamicin from coralline hydroxyapatite–chitosan composite microspheres. Carbohydr Polym. 2002; 49(3): 281-288.
[35] Sivakumar M, Rao KP. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite–gelatin composite microspheres. Biomaterials. 2002; 23(15): 3175-3181.
[36] Wei HJ, Yang HH, Chen CH, Lin WW, Chen SC, Lai PH, Chang Y, Sung HW. Gelatin microspheres encapsulated with a nonpeptide angiogenic agent, ginsenoside Rg 1, for intramyocardial injection in a rat model with infarcted myocardium. J Controlled Release. 2007; 120(1): 27-34.
[37] Bahrololoom ME, Javidi M, Javadpour S, Ma J. Charac- terisation of natural hydroxyapatite extracted from bovine cortical bone ash. J Ceram Process Res. 2009; 10: 129-138.
[38] Chang MC, Ko CC, Douglas WH. Preparation of hydrox- yapatite-gelatin nanocomposite. Biomaterials. 2003; 24(17): 2853-2862.
[39] Haberko K, Buæko MM, Brzeziñska-Miecznik J, Haberko M, Mozgawa W, Panz T, Pyda A, Zarêbski J. Natural hydroxyapatite its behaviour during heat treatment. J Eur Ceram Soc. 2006; 26(4): 537-542.