Nano-niosomes in drug, vaccine and gene delivery: a rapid overview

Document Type: Review Paper


1 Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran

2 Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran

3 Aerosol Research Laboratory, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran


Niosomes, non-ionic surfactant vesicles (NSVs), are the hydrated lipids composed mainly of different classes of non-ionic surfactants, introduced in the seventies as a cosmetic vehicle. Nowadays, niosomes are used as important new drug delivery systems by many research groups and also they are effective immunoadjuvants which some commercial forms are available in the market. These vesicles recently used as gene transfer vectors as well. This review article presents a brief report about the achievements in the field of nanoscience related to NSVs. Different polar head groups from a vast list of various surfactants with one, two or three lipophilic alkyl, perfluoroalkyl and steroidal moieties may be utilized to form the proper vesicular structures for encapsulating both hydrophilic and hydrophobic compounds. The methods of niosome preparation, the vesicle stability related aspects and many examples of pharmaceutical applications of NSVs will be presented. The routes of administration of these amphiphilic assemblies are also discussed. 


1. Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, et al. Nanomedicine: Application areas and development prospects. Int J Mol Sci. 2011; 12(5): 3303-21.

2. Vauthey S, Santoso S, Gong H, Watson N, Zhang S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proceed National Acad Sci. 2002 ; 99(8): 5355-60.

3. Wang ZL. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv Mater. 2003; 15(5): 432-6.

4. Mozafari RM. Nanoliposomes: from fundamentals to recent developments: Trafford Publishing, 2005, 238 pages.

5. Misra R, Sahoo SK. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. Eur J Pharm Sci. 2010 ;39(1): 152-63.

6. Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnology, Biology and Med. 2005;1(1):22-30.

7. Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation. J Nanoparticle Res. 2013 ;15(4): 1-14.

8. Drummond DC, Noble CO, Guo Z, Hayes ME, Connolly-Ingram C, Gabriel BS, et al. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J Control Release. 2010; 141(1): 13-21.

9. Sennato S, Bordi F, Cametti C, Marianecci C, Carafa M, Cametti M. Hybrid niosome complexation in the presence of oppositely charged polyions. J Phys Chem B. 2008 ;112: 3707-20.

10. Hanjani-Vila R, Rondot B, Vanlerberghie G. Dispersion of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci. 1979; 1(5): 303-14.

11. Fang JY, Hong CT, Chiu WT, Wang YY. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm. 2001 ;219(1-2): 61-72.

12. Ijeoma F, Vyas S. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1): 33.

13. Sahin NO. Niosomes as nanocarrier systems. Nanomat Nanosys Biomed Appl. 2007 :67-81.

14. Fang J-Y, Yu S-Y, Wu P-C, Huang Y-B, Tsai Y-H. In vitro skin permeation of estradiol from various proniosome formulations. Int J Pharm. 2001; 215(1): 91-9.

15. Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 1999 ;185(1): 23-35.

16. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998; 172(1): 33-70.

17. Sezgin-Bayindir Z, Yuksel N. Investigation of Formulation Variables and Excipient Interaction on the Production of Niosomes. AAPS PharmSciTech. 2012: 1-10.

18. Varshosaz J, Pardakhty A, Hajhashemi V, Najafabadi A. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Del. 2003 ;10: 251-62.

19. Okahata Y, Ando R, Kunitake T. Phase Transition of the Bilayer Membrane of Synthetic Dialkyl Amphiphiles as Studied by Differential Scanning Calorimetry. Berichte der Bunsengesellschaft für physikalische Chemie. 1981 ;85(8): 789-98.

20. Jain C, Vyas S. Preparation and characterization of niosomes containing rifampicin for lung targeting. J  Microencap. 1995; 12: 401-7.

21. Jain S, Singh P, Mishra V, Vyas S. Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol Lett. 2005; 101: 41-9.

22. Yoshioka T, Sternberg B, Florence A. Preparation and properties of vesicles (niosomes)of sorbitan monoesters (Span 20, 40, 60, and 80) and a sorbitan triester (Span 85). Int J Pharm. 1994 ;105: 1-6.

23. Zarif L, Gulik-Krzywicki T, Riess JG, Pucci B, Guedj C, Pavia AA. Alkyl and perfluoroalkyl glycolipid-based supramolecular assemblies. Colloid Surf A: Physicochem Eng Aspect. 1994 ;84(1): 107-12.

24. Echegoyen LE, Hernandez JC, Kaifer AE, Gokel GW, Echegoyen L. Aggregation of steroidal lariat ethers: the first example of nonionic liposomes (niosomes) formed from neutral crown ether compounds. J Chem Soc, Chem Commun. 1988 (12): 836-7.

25. Junyaprasert V, Teeranachaideekul V, Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech. 2008 ;9: 851-9.

26. Devaraj G, Parakh S, Devraj R, Apte S, Rao B, Rambhau D. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J Colloid Interface Sci. 2002 ;251: 360-5.

27. Masotti A, Vicennati P, Alisi A, Marianecci C, Rinaldi F, Carafa M, et al. Novel Tween® 20 derivatives enable the formation of efficient pH-sensitive drug delivery vehicles for human hepatoblastoma. Bioorg Med Chem Lett. 2010 ;20(10): 3021-5.

28. Nasseri B. Effect of cholesterol and temperature on the elastic properties of niosomal membranes. Int J Pharm. 2005 ;300: 95-101.

29. Caracciolo G, Pozzi D, Caminiti R, Marianecci C, Moglioni S, Carafa M, et al. Effect of hydration on the structure of solid-supported Niosomal membranes investigated by in situ energy dispersive X-ray diffraction. Chem Phys Lett. 2008 ;462(4-6): 307-12.

30. van Hal DA, Bouwstra JA, van Rensen A, Jeremiasse E, de Vringer T, Junginger HE. Preparation and characterization of nonionic surfactant vesicles. J Colloid Interface Sci. 1996 ;178(1): 263-73.

31. Chen H, Zhu H, Zheng J, Mou D, Wan J, Zhang J, et al. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J Control Release. 2009 ;139(1): 63-72.

32. Pardakhty A, Shakibaie M, Daneshvar H, Khamesipour A, Mohammadi-Khorsand T, Forootanfar H. Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. J Microencapsul. 2012 ;29(3): 219-24.

33. Uchegbu IF, Duncan R. Niosomes containing N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin (PK1): effect of method of preparation and choice of surfactant on niosome characteristics and a preliminary study of body distribution. Int J Pharm. 1997;155(1):7-17.

34. Uchegbu I, Double J, Kelland L, Turton J, Florence A. The activity of doxorubicin niosomes against an ovarian cancer cell line and three in vivo mouse tumour models. J Drug Target. 1996 ;3: 399-409.

35.      Dimitrijevic D, Lamandin C, Uchegbu IF, Shaw AJ, Florence AT. The effect of monomers and micellar and vesicular forms of non-ionic surfactants (Solulan C24 and Solulan 16) on Caco-2 cell monolayers. J Pharm Pharmacol. 1997; 49(6): 611-6.

36. Suwakul W, Ongpipattanakul B, Vardhanabhuti N. Preparation and characterization of propylthiouracil niosomes. J Liposome Res. 2006 ;16(4): 391-401.

37. Yang D, Zhu J, Huang Z, Ren H, Zheng Z. Synthesis and application of poly (ethylene glycol)-cholesterol (Chol-PEGm) conjugates in physicochemical characterization of nonionic surfactant vesicles. Colloid Surf B: Biointerfaces. 2008; 63(2): 192-9.

38. Pardakhty A, Moazeni E, Varshosaz J, Hajhashemi V, Najafabadi AR. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. DARU J Pharm Sci. 2012 ;19(6): 404-11.

39. Balasubramaniam A, Kumar V, Pillai K. Formulation and in vivo evaluation of niosome-encapsulated daunorubicin hydrochloride. Drug Dev Ind Pharm. 2002 ;28 :1181-93.

40. Rogerson A, Cummings J, Florence A. Adriamycin-loaded niosomes: drug entrapment, stability and release. J  Microencap. 1987 ;4: 321-8.

41. Kirby C, Gregoriadis G. Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Nat Biotechnol. 1984 ;2(11): 979-84.

42. Foster T, Dorfman KD, Ted Davis H. Giant biocompatible and biodegradable PEG–PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets. J Colloid Interface Sci. 2010 ;351(1): 140-50.

43. Zidan AS, Rahman Z, Khan MA. Product and process understanding of a novel pediatric anti-HIV tenofovir niosomes with a high-pressure homogenizer. Eur J Pharm Sci. 2011 ;44(1): 93-102.

44. Liu T, Guo R. Structure and transformation of the niosome prepared from PEG 6000/Tween 80/Span 80/H2O lamellar liquid crystal. Colloid Surf A: Physicochem Eng Aspect. 2007 ;295(1): 130-4.

45. Nademi M, Mozaffari A, Farrokhabadi A. A New Self Healing Method in Composite Laminates Using the Hollow Glass Fiber. Key Eng Mat. 2011 ;471: 548-51.

46. Manosroi A, Chutoprapat R, Abe M, Manosroi J. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int J Pharm. 2008; 352: 248-55.

47. Talsma H, Steenbergen Mv, Borchert J, Crommelin D. A novel technique for the one-step preparation of liposomes and nonionic surfactant vesicles without the use of organic solvents. Liposome formation in a continuous gas stream: the 'bubble' method. J Pharm Sci. 1994 ;83 :276-80.

48. Lo C, Jahn A, Locascio L, Vreeland W. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir. 2010 ;26: 8559-66.

49. Okumura Y, Iwata Y. Electroformation of Giant Vesicles and Electrode Polarity. Bull Chem Soc Jpn. 2011; 84(10): 1147-9.

50. Jin Y, Wen J, Garg S, Liu D, Zhou Y, Teng L, et al. Development of a novel niosomal system for oral delivery of Ginkgo biloba extract. Int J Nanomedicine. 2013 ;8: 421.

51. Di Marzio L, Esposito S, Federica R, Carlotta M, Maria C. Polysorbate 20 vesicles as oral delivery system: in-vitro characterization. Colloid Surf B: Biointerfaces. 2012 ;104: 200-6.

52. O’brien M, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004 ;15(3): 440-9.

53. ElBayoumi TA, Torchilin VP. Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clin Cancer Res. 2009 ;15(6): 1973-80.

54. Cosco D, Paolino D, Muzzalupo R, Celia C, Citraro R, Caponio D, et al. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed Microdevice. 2009 ;11(5): 1115-25.

55. Hamilton A, Biganzoli L, Coleman R, Mauriac L, Hennebert P, Awada A, et al. EORTC 10968: a phase I clinical and pharmacokinetic study of polyethylene glycol liposomal doxorubicin (Caelyx®, Doxil®) at a 6-week interval in patients with metastatic breast cancer. Ann Oncol. 2002; 13(6): 910-8.

56. Tavano L, Vivacqua M, Carito V, Muzzalupo R, Caroleo MC, Nicoletta F. Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloid Surf B: Biointerfaces. 2013 ;102: 803-7.

57. Shi B, Fang C, Pei Y. Stealth PEG PHDCA niosomes: Effects of chain length of PEG and particle size on niosomes surface properties, in vitro drug release, phagocytic uptake, in vivo pharmacokinetics and antitumor activity. J Pharm Sci. 2006 ;95(9): 1873-87.

58. Hashim F, El-Ridy M, Nasr M, Abdallah Y. Preparation and characterization of niosomes containing ribavirin for liver targeting. Drug Del. 2010 ;17(5): 282-7.

59. Mukherjee B, Patra B, Layek B, Mukherjee A. Sustained release of acyclovir from nano-liposomes and nano-niosomes: An in vitro study. Int J Nanomedicine. 2007 ;2(2): 213-25.

60. Maiti S, Paul S, Mondol R, Ray S, Sa B. Nanovesicular Formulation of Brimonidine Tartrate for the Management of Glaucoma: In Vitro and In Vivo Evaluation. AAPS PharmSciTech. 2011 ;12(2): 755-63.

61. Kurmi BD, Kayat J, Gajbhiye V, Tekade RK, Jain NK. Micro-and nanocarrier-mediated lung targeting. Expert Opin Drug Deliv. 2010; 7(7): 781-94.

62. Elhissi A, Hidayat K, Phoenix DA, Mwesigwa E, Crean S, Ahmed W, et al. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int J Pharm. 2013 ;444: 193-9.

63. Priprem A, Limphirat W, Limsitthichaikoon S, Johns J, Mahakunakorn P. Intranasal Delivery of Nanosized Melatonin-Encapsulated Niosomes in Rats. . Open Access Sci Rep. 2012 ;1(4) :232-7.

64. Babu S, Fan C, Stepanskiy L, Uitto J, Papazoglou E. Effect of size at the nanoscale and bilayer rigidity on skin diffusion of liposomes. J Biomed Mat Res A. 2009 ;91(1): 140-8.

65. Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anticancer Drugs. 2011 ;22(8): 774-82.

66. Mali N, Darandale S, Vavia P. Niosomes as a vesicular carrier for topical administration of minoxidil: formulation and in vitro assessment. Drug Del Trans Res. 2012 :1-6.

67. Manosroi A, Khositsuntiwong N, Götz F, Werner RG, Manosroi J. Transdermal enhancement through rat skin of luciferase plasmid DNA loaded in elastic nanovesicles. J Liposome Res. 2009; 19(2): 91-8.

68. Honeywell-Nguyen PL, Bouwstra JA. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action. J Control Release. 2003; 86(1) :145-56.

69. Ning M, Guo Y, Pan H, Yu H, Gu Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: Studies in rats. Drug Del. 2005; 12(6): 399-407.

70. Huang Y, Han G, Wang H, Liang W. Cationic niosomes as gene carriers: preparation and cellular uptake in vitro. Pharmazie. 2005 ;60: 473-4.

71. Meyer O, Kirpotin D, Hong K, Sternberg B, Park JW, Woodle MC, et al. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem. 1998 ;273(25): 15621-7.

72. Huang Y, Chen J, Chen X, Gao J, Liang W. PEGylated synthetic surfactant vesicles (Niosomes): novel carriers for oligonucleotides. J Mater Sci Mater Med. 2008; 19: 607-14.

73. Manosroi A, Thathang K, Werner R, Schubert R, Manosroi J. Stability of luciferase plasmid entrapped in cationic bilayer vesicles. Int J Pharm. 2008; 356: 291-9.

74. Manosroi A, Khositsuntiwong N, Götz F, Werner R, Manosroi J. Transdermal enhancement through rat skin of luciferase plasmid DNA loaded in elastic nanovesicles. J Liposome Res. 2009;19:91-8.

75. Manosroi J, Khositsuntiwong N, Manosroi W, Götz F, Werner R, Manosroi A. Enhancement of transdermal absorption, gene expression and stability of tyrosinase plasmid (pMEL34)-loaded elastic cationic niosomes: potential application in vitiligo treatment. J Pharm Sci. 2010 ;99: 3533-41.

76. Khositsuntiwong N, Manosroi A, Götz F, Werner RG, Manosroi W, Manosroi J. Enhancement of gene expression and melanin production of human tyrosinase gene loaded in elastic cationic niosomes. J Pharm Pharmacol. 2012.

77. Obrenovic MM, Perrie Y, Gregoriadis G. Entrapment of plasmid DNA into niosomes: characterization studies. J Pharm Pharmacol. 1998 ;50(S9):155-.

78. Brewer J, Alexander J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology. 1992; 75: 570-5.

79. Hassan Y, Brewer J, Alexander J, Jennings R. Immune responses in mice induced by HSV-1 glycoproteins presented with ISCOMs or NISV delivery systems. Vaccine. 1996;14(17): 1581-9.

80. Mohamedi S, Brewer J, Alexander J, Heath A, Jennings R. Antibody responses, cytokine levels and protection of mice immunised with HSV-2 antigens formulated into NISV or ISCOM delivery systems. Vaccine. 2000;18(20):2083-94.

81. Yoshioka T, Skalko N, Gursel M, Gregoriadis G, Florence A. A non-ionic surfactant vesicle-in-water-in-oil (v/w/o) system: potential uses in drug and vaccine delivery. J Drug Target. 1995;2: 533-9.

82. Murdan S, Gregoriadis G, Florence A. Sorbitan monostearate/polysorbate 20 organogels containing niosomes: a delivery vehicle for antigens. Eur J Pharm Sci. 1999 ;8 : 77-86.

83. Chambers MA, Wright DC, Brisker J, Williams A, Hatch G, Gavier-Widén D, et al. A single dose of killed Mycobacterium bovis BCG in a novel class of adjuvant (Novasome™) protects guinea pigs from lethal tuberculosis. Vaccine. 2004 ;22 (8): 1063-71.

84. Vangala A, Kirby D, Rosenkrands I, Agger E, Andersen P, Perrie Y. A comparative study of cationic liposome and niosome-based adjuvant systems for protein subunit vaccines: characterisation, environmental scanning electron microscopy and immunisation studies in mice. J pharm pharmacol. 2006; 58: 787-99.

85. cationicniosadjuvant2006.

86. Vangala A, Bramwell VW, McNeil S, Christensen D, Agger EM, Perrie Y. Comparison of vesicle based antigen delivery systems for delivery of hepatitis B surface antigen. J Control Release. 2007 ;119(1): 102-10.

87. Ferro V, Stimson W. Investigation into suitable carrier molecules for use in an anti-gonadotrophin releasing hormone vaccine. Vaccine. 1998; 16(11): 1095-102.

88. Ferro VA, Costa R, Carter KC, Harvey MJ, Waterston MM, Mullen AB, et al. Immune responses to a GnRH-based anti-fertility immunogen, induced by different adjuvants and subsequent effect on vaccine efficacy. Vaccine. 2004 ;22(8): 1024-31.

89. LezamaDávila CM. Vaccination of C57BL/10 mice against cutaneous leishmaniasis. Use of purified gp63 encapsulated into niosomes surfactants vesicles: a novel approach. Mem Inst Oswaldo Cruz. 1999; 94(1): 67-70.

90. Rentel C, Bouwstra J, Naisbett B, Junginger H. Niosomes as a novel peroral vaccine delivery system. Int J Pharm. 1999; 186: 161-7.

91. Chattaraj S, Das S. Physicochemical characterization of influenza viral vaccine loaded surfactant vesicles. Drug Del. 2003;10(2): 73-7.

92. Jain S, Vyas S. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J Liposome Res. 2006 ;16: 331-45.

93. Gupta P, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, et al. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm. 2005 ;293 :73-82.

94. Mahor S, Gupta PN, Rawat A, Vyas SP. A needle-free approach for topical immunization: antigen delivery via vesicular carrier system (s). Curr Med Chem. 2007 ;14(27): 2898-910.

95. Perrie Y, Barralet J, McNeil S, Vangala A. Surfactant vesicle-mediated delivery of DNA vaccines via the subcutaneous route. Int J Pharm.  2004; 284(1): 31-41.

96. Vyas S, Singh R, Jain S, Mishra V, Mahor S, Singh P, et al. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm.  2005; 296: 80-6.