A review on nanostructured stainless steel implants for biomedical application

Document Type: Review Paper


1 Biomaterial Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran

2 Nano-materials Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran

3 Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan, Iran


Over the last two decades, many researchers have developed a variety of stainless steel-based medical implant types,taking full advantage of nanostructuring technologies. In this paper the application, fabrication and development of nanostructured stainless steel based materials with new composition for medical implants will be discussed. It is well established that application of severe plastic deformation (SPD) can decrease the grain size of metals and alloys significantly to the nanometer range. Among all the available SPD methods, equal channel angular pressing (ECAP) is very applicable. Stainless Steel became the raw structural material for the majority of the developed medical implants, and several techniques had to be studied and established in order to fabricate a feasible stainless steel-based neural probe. These nanostructured implants present a superior performance mechanically, biologically and electrically, when compared to the conventional implants. Finally, the effect of alloying elements on the bio-interaction of stainless steel will be explained.


1. Finn WE, LoPresti PG. Handbook of neuroprosthetic methods: CRC Press; 2002.

2. Arsiwala A, Desai P, Patravale V. Recent advances in micro/nanoscale biomedical implants. J. Control. Release. 2014; 189: 25-45.

3. Gotman I. Characteristics of metals used in implants. J. endourol. 1997; 11(6): 383-389.

4. Park J, Lakes RS. Biomaterials: an introduction: SSBM; 2007.

5. Zardiackas LD, Kraay MJ, Freese HL, editors. Titanium, niobium, zirconium, and tantalum for medical and surgical applications. Astm, 2006.

6. Mansor N, Abdullah S, Ariffin A, Syarif J. A review of the fatigue failure mechanism of metallic materials under a corroded environment. Eng. Fail. Anal. 2014; 42: 353-3565.

7. Balazic M, Kopac J, Jackson MJ, Ahmed W. Review: titanium and titanium alloy applications in medicine. International. J. Nano Biomater. 2007; 1(1): 3-34.

8. Von Recum AF. Handbook of biomaterials evaluation: scientific, technical and clinical testing of implant materials: CRC Press; 1998.

9. Arnould C, Denayer J, Planckaert M, Delhalle J, Mekhalif Z. Bilayers coating on titanium surface: The impact on the hydroxyapatite initiation. J. Colloid Interface Sci. 2010; 341(1): 75-82.

10. Arnould C, Volcke C, Lamarque C, Thiry PA, Delhalle J, Mekhalif Z. Titanium modified with layer-by-layer sol–gel tantalum oxide and an organodiphosphonic acid: A coating for hydroxyapatite growth. J. Colloid Interface Sci. 2009; 336(2): 497-503.

11. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. Mater Sci. 2009; 54(3): 397-425.

12. Heimann RB. Structure, properties, and biomedical performance of osteoconductive bioceramic coatings. Surf. Coat. Technol. 2013; 233: 27-38.

13. Azushima A, Kopp R, Korhonen A, Yang D, Micari F, Lahoti G, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A. Severe plastic deformation (SPD) processes for metals. Cirp. Ann-Manuf. Techn. 2008; 57(2): 716-735.

14. Nie F, Zheng Y, Wei S, Hu C, Yang G. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed. Mater. 2010; 5(6): 065015.

15. Orlov D, Ralston K, Birbilis N, Estrin Y. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 2011; 59(15): 6176-6186.

16. Ahmed AA, Mhaede M, Wollmann M, Wagner L. Effect of surface and bulk plastic deformations on the corrosion resistance and corrosion fatigue performance of AISI 316L. Surf. Coat. Technol. 2014; 259: 448-55.

17. Suresh K, Geetha M, Richard C, Landoulsi J, Ramasawmy H, Suwas S, Asokamani R. Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti–13Nb–13Zr alloy in simulated body fluid. Mater. Sci. Eng., C. 2012; 32(4): 763-71.

18. Fattah-alhosseini A, Imantalab O. Effect of accumulative roll bonding process on the electrochemical behavior of pure copper. J. Alloys Compd. 2015; 632: 48-52.

19. Sun Y, Zeng W, Han Y, Zhao Y, Wang G, Dargusch MS, Guo P. Modeling the correlation between microstructure and the properties of the Ti–6Al–4V alloy based on an artificial neural network. Mater. Sci. Eng., A. 2011; 528(29): 8757-8764.

20. Hajizadeh K, Maleki Ghaleh H, Arabi A, Behnamian Y, Aghaie E, Farrokhi A, Hosseini MG, Fathi MH. Corrosion and biological behavior of nanostructured 316L stainless steel processed by severe plastic deformation. Surf. Interface Anal. 2015; 47(10): 978-85.

21. Park JB, Lakes RS. Metallic implant materials. j. Biomater. 2007: 99-137.

22. Bronzino JD, Peterson DR. Biomedical engineering fundamentals: CRC Press; 2014.

23. Geetha M, Singh A, Asokamani R, Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog. Mater Sci. 2009; 54(3): 397-425.

24. Schliephake H, Scharnweber D. Chemical and biological functionalization of titanium for dental implants. J. Mater. Chem. 2008;18(21): 2404-24014.

25. Wu S, Liu X, Yeung KWK, Guo H, Li P, Hu T, Chung CY, Chu PK. Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surf. Coat. Technol. 2013; 233: 13-26.

26. Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and

rhenium. j. Biomater. 2001; 22(11): 1253-1262.

27. Sun Y-S, Chang J-H, Huang H-H. Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide. Thin Solid Films. 2013; 528: 130-135.

28. Hemmersam AG, Foss M, Chevallier J, Besenbacher F. Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique. Colloids Surf. B. 2005; 43(3–4): 208-215.

29. Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta. Biomater. 2010; 6(8): 3349-3359.

30. Cheng Y, Cai W, Zheng YF, Li HT, Zhao LC. Surface characterization and immersion tests of TiNi alloy coated with Ta. Surf. Coat. Technol. 2005; 190(2–3): 428-433.

31. Leng YX, Chen JY, Yang P, Sun H, Wang J, Huang N. The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition. Nucl. Instrum. Methods Phys. Res., Sect. B. 2006; 242(1–2): 30-2.

32. Miyazaki T, Kim H-M, Kokubo T, Ohtsuki C, Kato H, Nakamura T. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. j. Biomater. 2002; 23(3): 827-32.

33. Brown RN, Sexton BE, Chu T-MG, Katona TR, Stewart KT, Kyung H-M, Liu SS. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis. Ajo-Do. 2014; 145(4): 496-504.

34. Maleki-Ghaleh H, Hajizadeh K, Aghaie E, Alamdari SG, Hosseini M, Fathi M, Ozaltin K, Kurzydlowski KJ. Effect of Equal Channel Angular Pressing Process on the Corrosion Behavior of Type 316L Stainless Steel in Ringer’s Solution. j. Corros. 2014; 71(3): 367-375.

35. O’Brien BJ, Stinson JS, Larsen SR, Eppihimer MJ, Carroll WM. A platinum–chromium steel for cardiovascular stents. j. Biomater. 2010; 31(14): 3755-61.

36. Sartowska B, Piekoszewski J, Waliœ L, Barlak M, Calliari I, Brunelli K, Senatorski J, Starosta W. Alloying the near Surface Layer of Stainless Steel with Rare Earth Elements (REE) Using High Intensity Pulsed Plasma Beams (HIPPB). Solid State Phenomena; Trans Tech Publ. 2012.

37. Streicher MA. Alloying stainless steels with the platinum metals. Platinum. Met. Rev. 1977; 21(2): 51-5.

38. Cunat P-J. Alloying elements in stainless steel and other chromium-containing alloys. ICDA. 2004; 45(6): 122-131.

39. Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta. Biomater. 2011; 7(3): 1407-1420.

40. Lagneborg R, Siwecki T, Zajac S, Hutchinson B. The role of vanadium in microalloyed steels. Scand. J. Met. 1999; 28(5): 186-241.

41. Gunduz S, Capar A. Influence of forging and cooling rate on microstructure and properties of medium carbon microalloy forging steel. J. Mater. Sci. 2006;41(2):561-564.

42. Gunduz S, Cochrane RC. Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel. Mater. Des. 2005; 26(6): 486-492.

43. Chen C, Zhang F, Yang Z, Zheng C. Superhardenability behavior of vanadium in 40CrNiMoV steel. Mater. Des. 2015; 83: 422-430.

44. Pan T, Cuiyin-hui S, Zhangyong-quan Y-f. Effect of Vanadium on the Strength and Toughness of Wheel Steel at Different Reheat Temperatures.

45. Yang G, Sun X, Li Z, Li X, Yong Q. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel. Mater. Des. 2013; 50: 102-107.

46. Hui W, Chen S, Zhang Y, Shao C, Dong H. Effect of vanadium on the high-cycle fatigue fracture properties of medium-carbon microalloyed steel for fracture splitting connecting rod. Mater. Des. 2015;66:227-234.

47. McGill I. Platinum metals in stainless steels. Platinum Met. Rev. 1990; 34(2): 85-97.

48. Tomashov N. Cathodic Modification with Platinum Metals. Platinum. Met. Rev. 1990; 34(3).

49. Tomashov N, Chernova G, Markova O. Influence of Pd on the Corrosion Resistance of OKh 25 M 3 T Steel in Dilute Solutions of HCl. Prot. Met. 1973;9(6): 616-8.

50. Chernova G. Influence of nitrogen, palladium, and molybdenum on the corrosion and electrochemical behavior of chromium-nickel steels in dilute hydrochloric acid. Prot. Met. 1980; 16(1): 3-8.

51. Griess JC, Savage H, Greeley R, English J, Boit S, Buxton S, Hess DN, Neumann PD, Snavely ES, Ulrich WC, Wisdom NE. Quarterly report of the solution corrosion group for the period ending. Oak Ridge National Lab., Tenn., 1958.

52. Chaudron G. Quarterly report no. 18. on stress corrosion of stainless steel. Centre National de la Recherche Scientifique, Paris (France), 1968.

53. Craig C, Friend C, Edwards M, Cornish L, Gokcen N. Mechanical properties and microstructure of platinum enhanced radiopaque stainless steel (PERSS) alloys. J. Alloys Compd. 2003; 361(1): 187-99.

54. Van Rooyen D. Review of the stress corrosion cracking of Inconel 600. j. Corros. 1975;31(9): 327-37.

55. Belo M, Montuelle J, Chaudron G. Immunity of Stainless Steel of Very High Purity to Stress Corrosion. Compt rend. 1971; 272(12): 1098-100.

56. Irani J, Honeycombe R. Clustering and precipitation in iron-molybdenum-carbon alloys. INST J. 1965; 203(8): 826-33.

57. Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ. Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. j. Biomater. 2000; 21(2) :105-111.

58. Kim H-W, Kong Y-M, Bae C-J, Noh Y-J, Kim H-E. Sol–gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. j. Biomater. 2004; 25(15): 2919-2926.

59. Meng F, Li Z, Liu X. Synthesis of tantalum thin films on

titanium by plasma immersion ion implantation and deposition. Surf. Coat. Technol. 2013; 229: 205-209.

60. Mohamed AMA, Abdullah AM, Younan NA. Corrosion behavior of superhydrophobic surfaces: A review. Arabian J. Chem. 2015; 8(6): 749-765.

61. Yalcinkaya S, Tüken T, Yazici B, Erbil M. Electrochemical synthesis and characterization of poly (pyrrole-co-o-toluidine). Prog. Org. Coat. 2008; 63(4): 424-433.

62. Yalcýnkaya S, Tüken T, Yazýcý B, Erbil M. Electrochemical synthesis and corrosion behaviour of poly (pyrrole-co-o-anisidine-co-o-toluidine). Curr. Appl Phys. 2010; 10(3): 783-789.

63. Yalcýnkaya S. Electrochemical synthesis of poly (o-anisidine)/chitosan composite on platinum and mild steel electrodes. Prog. Org. Coat. 2013; 76(1): 181-187.

64. Lally C, Kelly D, Prendergast P. Stents. Wiley Encyclopedia of Biomedical Engineering. 2006.

65. Nagy P. X-ray Analysis of Stents and their Markers. Period. Polytech. Mech. 2015; 59(1):30.

66. Chaturvedi T. Allergy related to dental implant and its clinical significance. Clin Cosmet Investig Dent. 2013; 5: 57-61.

67. Stover T, Lenarz T. Biomaterials in cochlear implants. GMS current topics in otorhinolaryngology, head and neck surgery. 2009; 8.

68. Albrektsson T, Brånemark P-I, Hansson H-A, Lindström J. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta. Ortho. Scand. 1981; 52(2): 155-70.

69. Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. New developments of Ti-based alloys for biomedical applications. j. Mater. 2014;7(3): 1709-800.

70. Balla VK, Banerjee S, Bose S, Bandyopadhyay A. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta. biomater. 2010;6(6):2329-34.

71. Maleki-Ghaleh H, Hajizadeh K, Hadjizadeh A, Shakeri M, Alamdari SG, Masoudfar S, Aghaie E, Javidi M, Zdunek J, Kurzydlowski KJ. Electrochemical and cellular behavior of ultrafine-grained titanium in vitro. Mater. Sci. Eng., C. 2014;39:299-304.

72. Lin P, Lin C-W, Mansour R, Gu F. Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosens. Bioelectron. 2013;47:451-60.

73. Ahmed AA, Mhaede M, Wollmann M, Wagner L. Effect of surface and bulk plastic deformations on the corrosion resistance and corrosion fatigue performance of AISI 316L. Surf. Coat. Technol. 2014; 259, Part C: 448-55.

74. Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. mater. 2004; 3(8): 511-6.

75. Jiang J, Ma A, Song D, Yang D, Shi J, Wang K, Zhang L, Chen J. Anticorrosion behavior of ultrafine-grained Al-26 wt% Si alloy fabricated by ECAP. j. Mater. Sci. 2012; 47(22): 7744-7750.

76. Pal-Val P, Loginov YN, Demakov S, Illarionov A, Natsik V, Pal-Val L, Davydenko A, Rybalko A. Unusual Young× s modulus behavior in ultrafine-grained and microcrystalline copper wires caused by texture changes during processing and annealing. Mater. Sci. Eng., A. 2014; 618: 9-15.

77. Pal-Val P, Pal-Val L, Natsi V, Davydenko A, Rybalko A. Giant young’s modullus variations in Ultrafine-Grained copper caused by texture changes at post-SPD heat treatment. Arch. Met. Mater. 2015;60(4).

78. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 2006; 51(4): 427-556.

79. Dobatkin S, Gubicza J, Shangina D, Bochvar N, Tabachkova N. High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation. Mater. Lett. 2015; 153: 5-9.

80. Wang H-S, Yang J, Bhadeshia H. Characterisation of severely deformed austenitic stainless steel wire. Mater. Sci. Technol. 2005; 21(11): 1323-8.

81. Greger M, Vodárek V, Dobrzañski L, Kander L, Kocich R, Kuøetová B. The structure of austenitic steel AISI 316 after ECAP and low-cycle fatigue. JAMME. 2008; 28(2): 151-8.

82. Nag S, Banerjee R. Fundamentals of medical implant materials. ASM handbook. 2012; 23: 6-17.

83. Brownlee RR. Pacemaker catheter utilizing bipolar electrodes spaced in accordance to the length of a heart depolarization signal. Google Patents; 1992.

84. Grill WM, Reichert W. Signal considerations for chronically implanted electrodes for brain interfacing. Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment (Frontiers in Neuroscience). 2007: 41-62.

85. Salam MT, Gelinas S, Desgent S, Duss S, Turmel FB, Carmant L, Sawan M, Nguyen DK. Subdural porous and notched mini-grid electrodes for wireless intracranial electroencephalographic recordings. J Multidiscip Healthc. 2014; 7: 573.

86. Patrick E, Orazem ME, Sanchez JC, Nishida T. Corrosion of tungsten microelectrodes used in neural recording applications. J. Neurosci. Methods. 2011; 198(2): 158-171.

87. Patrick E. Design, fabrication, and characterization of microelectrodes for brain-machine interfaces: University of Florida; 2010.

88. Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 2014; 26(12): 1846-1885.

89. Desai SJ, Bharne AP, Upadhya MA, Somalwar AR, Subhedar NK, Kokare DM. A simple and economical method of electrode fabrication for brain self-stimulation in rats. J. Pharmacol. Toxicol. Methods. 2014; 69(2):141-149.

90. Neuman MR. Biopotential amplifiers. Medical instrumentation: application and design. 1998: 316-318.

91. Zhou DD, Greenbaum E. Implantable Neural Prostheses: Springer; 2010.