Influence of cell penetrating peptides on efficiency of lipid nanoparticles containing chemotherapeutics

Document Type : Review Paper

Authors

1 Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Chemical Engineering, School of Biotechnology, Malek Ashtar University, Tehran, Iran

3 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Cell-penetrating peptides (CPPs) are a group of short peptides that easily pass through the cell membrane and are able to carry various types of cargoes, such as drugs, nucleic acids, and proteins, into cells. Therefore, CPPs are investigated with the aim of effective drug delivery to treat diseases such as cancer, diabetes and genetic disorders. CPPs have different applications in different fields.
CPPs have common functions and some structural features, such as a high content of positively charged amino acids, but their structural differences are in the high variety of elements in them. In this paper, the effect of cell penetrating peptides on the efficiency of lipid nanoparticles containing chemotherapeutics is reviewed. Various drug delivery systems such as liposomes, solid lipid nanoparticles and exosomes were considered. Both in-vitro and in-vivo delivery routes were discussed.

Keywords


  1. Ghosh A, Sharma M, Zhao Y. Cell-penetrating protein-recognizing polymeric nanoparticles through dynamic covalent chemistry and double imprinting. Nat Commun. 2024;15(1):3731.
  2. Bottens RA, Yamada T. Cell-penetrating peptides (CPPs) as therapeutic and diagnostic agents for cancer. Cancers. 2022;14(22):5546.
  3. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. 012;17(15-16):850-860.
  4. Lundberg P, Langel Ü. A brief introduction to cell‐penetrating peptides. J Mol Recognit. 2003;16(5):227-233.
  5. Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design, synthesis, and applications. ACS nano. 2014;8(3):1972-1994.
  6. Langel Ü. Cell-penetrating peptides: Springer; 2011.
  7. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189-1193.
  8. Gautam A, Sharma M, Vir P, Chaudhary K, Kapoor P, Kumar R, et al. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. Eur J Pharm Biopharm. 2015;89:93-106.
  9. Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv. 2008;60(4-5):548-558.
  10. Lim KJ, Sung BH, Shin JR, Lee YW, Kim DJ, Yang KS, Kim SC. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PloS one. 2013;8(6):e66084.
  11. Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules. 2018;23(2):295.
  12. Duan Z, Chen C, Qin J, Liu Q, Wang Q, Xu X, Wang J. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv. 2017;24(1):752-764.
  13. Klimpel A, Luetzenburg T, Neundorf I. Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr Opin Pharmacol. 2019; 47:8-13.
  14. Pescina S, Ostacolo C, Gomez-Monterrey I, Sala M, Bertamino A, Sonvico F, et al. Cell penetrating peptides in ocular drug delivery: State of the art. J Control Release. 2018;284:84-102.
  15. Javadzadeh Y, Bahari LA. Chapter 8-Therapeutic nanostructures for dermal and transdermal drug delivery. Nano- and Microscale Drug Delivery Systems. Elsevier. 2017; 131-146.
  16. Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer therapy by silver nanoparticles: fiction or reality? Int J Mol Sci. 2022; 23(2):839.
  17. Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci. 2020;21(7):2536.
  18. Kroemer G, Chan TA, Eggermont AM, Galluzzi L. Immunosurveillance in clinical cancer management. CA Cancer J Clin. 2024;74(2):187-202.
  19. Chen P, Ye T, Li C, Praveen P, Hu Z, Li W, Shang C. Embracing the era of antimicrobial peptides with marine organisms. Nat Prod Rep. 2024; 41(3):331-346.
  20. Zhang L-j, Gallo RL. Antimicrobial peptides. Curr Biol. 2016; 26(1):R14-R19.
  21. Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919.
  22. Patel SG, Sayers EJ, He L, Narayan R, Williams TL, Mills EM, et al. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci Rep. 2019;9(1):6298.
  23. Heitz F, Morris MC, Divita G. Twenty years of cell‐penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. 2009;157(2):195-206.
  24. Langel Ü. CPP, cell-penetrating peptides: Springer; 2019.
  25. Nakase I, Akita H, Kogure K, Graslund A, Langel U, Harashima H, Futaki S. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res. 2012;45(7):1132-1139.
  26. Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discov Today. 2015;20(1):76-85.
  27. Pae J, Liivamägi L, Lubenets D, Arukuusk P, Langel Ü, Pooga M. Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes. Biochim Biophys Acta. 2016;1858(8):1860-1867.
  28. Desale K, Kuche K, Jain S. Cell-penetrating peptides (CPPs): An overview of applications for improving the potential of nanotherapeutics. Biomater Sci. 2021;9(4):1153-1188.
  29. Yang D, Liu B, Sha H. Advances and prospects of cell-penetrating peptides in tumor immunotherapy. Sci Rep. 2025;15(1):3392.
  30. Madani F, Lindberg S, Langel Ü, Futaki S, Gräslund A. Mechanisms of cellular uptake of cell-penetrating peptides. Biophys J. 2011;2011.
  31. Holm T, Johansson H, Lundberg P, Pooga M, Lindgren M, Langel Ü. Studying the uptake of cell-penetrating peptides. Nat Protoc. 2006;1(2):1001-1005.
  32. Delgado EM. Chemical Approaches to Improve the Manufacturability of Disulfide-Rich Peptide Toxins: Engineering a Stable and Selective Peptide Blocker of the K Ca 1.1 Channel: University of Hawai'i at Manoa; 2022.
  33. Li J, Li S, Du M, Song Z, Han H. Nuclear Delivery of Exogenous Gene in Mature Plants Using Nuclear Location Signal and Cell-Penetrating Peptide Nanocomplex. ACS Appl Nano Mater. 2022;6(1):160-170.
  34. Ohshima K, Takeda S, Hirose M, Akiyama Y, Iguchi K, Hoshino M, et al. Structure-function relationship of the nuclear localization signal sequence of parathyroid hormone-related protein. Biomed Res. 2012;33(3):191-199.
  35. Chen H-CG, Chiou S-T, Zheng J-Y, Yang S-H, Lai S-S, Kuo T-Y. The nuclear localization signal sequence of porcine circovirus type 2 ORF2 enhances intracellular delivery of plasmid DNA. Arch Virol. 2011;156:803-815.
  36. Deshayes S, Morris MC, Divita G, Heitz F. Interactions of amphipathic CPPs with model membranes. BBA Biomembranes. 2006;1758(3):328-335.
  37. Oba M. Chapter 5- Amphipathic peptide. Cell‐penetrating peptides; Design, development and applications. Wiely. 2023:57-67.
  38. Dariushnejad H, Karimitabar F, Hamidi M, Ahmadi NA. Cell-penetrating peptides (CPPs): A tool in modern biotechnology. JParamed Sci. 2014; 5(3): 108-113.
  39. Johansson HJ, El-Andaloussi S, Holm T, Mäe M, Jänes J, Maimets T, Langel Ü. Characterization of a novel cytotoxic cell‐penetrating peptide derived from p14ARF protein. Mol Ther. 2008;16(1):115-123.
  40. Nehete JY, Bhambar RS, Narkhede MR, Gawali SR. Natural proteins: Sources, isolation, characterization and applications. Phcog Rev. 2013;7(14):107.
  41. Song J, Qian Z, Sahni A, Chen K, Pei D. Cyclic cell‐penetrating peptides with single hydrophobic groups. Chembiochem. 2019;20(16):2085-2088.
  42. Freedman JE. Molecular regulation of platelet-dependent thrombosis. Circulation. 2005;112(17):2725-2734.
  43. Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv. 2022;59:107962.
  44. Mello LR, Hamley IW, Castelletto V, Garcia BB, Lourenço TC, Vassiliades SV, et al. Self-assembly and intracellular delivery of DNA by a truncated fragment derived from the Trojan peptide Penetratin. Soft Matter. 2020;16(20):4746-4755.
  45. Varnamkhasti BS, Jafari S, Taghavi F, Alaei L, Izadi Z, Lotfabadi A, et al. Cell-penetrating peptides: As a promising theranostics strategy to circumvent the blood-brain barrier for CNS diseases. Curr Drug Deliv. 2020;17(5):375-386.
  46. Qian Y, Wang X, Liu Y, Li Y, Colvin RA, Tong L, et al. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Lett. 2014;351(2):242-251.
  47. Tiwari MG. From inception of herbal medicine to an ideal perception of therapeutic agent: Rhododendron as a therapeutic agent–A review. IJMSCR. 2020;3(6):147-162.
  48. Greene LA, Zhou Q, Siegelin MD, Angelastro JM. Targeting transcription factors ATF5, CEBPB and CEBPD with cell-penetrating peptides to treat brain and other cancers. Cells. 2023;12(4):581.
  49. Zhang X, Liu E, Song Y, Yu P, Redkar S, Yu G-L. Dependence of EGFR-mutant NSCLC on MET as demonstrated by vebreltinib, a novel and selective brain-penetrating MET kinase inhibitor. Cancer Res. 2024;84(6_Supplement):6500.
  50. Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv. Drug Deliv Rev. 2020;156:4-22.
  51. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022;8(5): e09394.
  52. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015:975-999.
  53. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv Rev. 2013;65(1):36-48.
  54. Mojarad-Jabali S, Mahdinloo S, Farshbaf M, Sarfraz M, Fatahi Y, Atyabi F, Valizadeh H. Transferrin receptor-mediated liposomal drug delivery: Recent trends in targeted therapy of cancer. Expert Opin Drug Deliv. 2022;19(6):685-705.
  55. Sauer WH, Steiger NA, Tzou WS, Schuller JL, Zheng L, Nguyen DT. Facilitated myocardial ablation using heat-sensitive liposomes containing doxorubicin: A proof-of-concept preclinical study. JACC Clin Electrophysiol. 2023; 9(8 Pt 1):1404-1408.
  56. Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release. 2019;309:106-124.
  57. Hamley IW. Lipopeptides for vaccine development. Bioconjug Chem. 2021;32(8):1472-1490.
  58. de Jong H, Bonger KM, Löwik DW. Activatable cell-penetrating peptides: 15 years of research. RSC Chem Biol. 2020;1(4):192-203.
  59. Zhang Q, Tang J, Fu L, Ran R, Liu Y, Yuan M, He Q. A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system. Biomater. 2013;34(32):7980-7993.
  60. de Sousa Cabral LG, Hesse H, Freire KA, de Oliveira CS, Pedron CN, Alves MG, et al. The BR2 peptide associated with 2-aminoethyl dihydrogen phosphate is a formulation with antiproliferative potential for a triple-negative breast cancer model. Biomed Pharmacother. 2022;153:113398.
  61. Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: An overview. J Drug Deliv Sci Technol. 2020;56:101549.
  62. Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal. 2021;192:113642.
  63. Nekkanti V, Kalepu S. Recent advances in liposomal drug delivery: a review. Pharm Nanotechnol. 2015;3(1):35-55.
  64. Reveret L, Leclerc M, Morin F, Émond V, Calon F. Pharmacokinetics, biodistribution and toxicology of novel cell-penetrating peptides. Sci Rep.2023;13(1):11081.
  65. Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems–the current state. Acta Odontol Scand. 2022;309:102757.
  66. Yengopal V, Mickenautsch S. Caries preventive effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): a meta-analysis. Acta Odontologica Scandinavica. 2009;67(6):321-332.
  67. Liu X, Zhang L, Jiang W, Yang Z, Gan Z, Yu C, et al. In vitro and in vivo evaluation of liposomes modified with polypeptides and red cell membrane as a novel drug delivery system for myocardium targeting. Drug Deliv. 2020;27(1):599-606.
  68. Wang X, Huang H, Zhang L, Bai Y, Chen H. PCM and TAT co-modified liposome with improved myocardium delivery: in vitro and in vivo evaluations. Drug Deliv. 2017;24(1):339-345.
  69. Hayashi T, Shinagawa M, Kawano T, Iwasaki T. Drug delivery using polyhistidine peptide-modified liposomes that target endogenous lysosome. Biochem Biophys Res Commun. 2018;501(3):648-653.
  70. Mazhar A, El-Hansi N, Shafaa MW, Shalaby M. Radiation sterilization of liposomes: A literature review. Radiat Phys Chem. 2024:111592.
  71. Yang Y, Yang Y, Xie X, Wang Z, Gong W, Zhang H, et al. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomater. 2015;48:84-96.
  72. Cho HJ, Jung JI, Lim DY, Kwon GT, Her S, Park JH, Park JHY. Bone marrow-derived, alternatively activated macrophages enhance solid tumor growth and lung metastasis of mammary carcinoma cells in a Balb/C mouse orthotopic model. Breast Cancer Res. 2012;14:1-12.
  73. Ding Y, Cui W, Sun D, Wang G-L, Hei Y, Meng S, et al. In vivo study of doxorubicin-loaded cell-penetrating peptide-modified pH-sensitive liposomes: biocompatibility, bio-distribution, and pharmacodynamics in BALB/c nude mice bearing human breast tumors. Drug Des Devel Ther. 2017:3105-3117.
  74. Maity SK, Stahl P, Hensel A, Knauer S, Hirschhäuser C, Schmuck C. Cancer‐cell‐specific drug delivery by a tumor‐homing CPP‐gossypol conjugate employing a tracelessly cleavable linker. Chem Eur J. 2020;26(14):3010-3015.
  75. dos Santos Rodrigues B, Kanekiyo T, Singh J. In vitro and in vivo characterization of CPP and transferrin modified liposomes encapsulating pDNA. Nanomedicine: NBM. 2020;28:102225.
  76. Gronewold A, Horn M, Ranđelović I, Tóvári J, Muñoz Vázquez S, Schomäcker K, Neundorf I. Characterization of a cell‐penetrating peptide with potential anticancer activity. Chem Med Chem. 2017;12(1):42-49.
  77. Shi J, Guo S, Wu Y, Chen G, Lai J, Xu X. Behaviour of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B on the migration, proliferation, and survival of human skin fibroblasts. J. Liposome Res. 2020;30(1):93-106.
  78. Kawak P, Sawaftah NMA, Pitt WG, Husseini GA. Transferrin-targeted liposomes in glioblastoma therapy: a review. Int J Mol Sci. 2023;24(17):13262.
  79. Yuan M, Qiu Y, Zhang L, Gao H, He Q. Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv. 2016;23(4):1171-1183.
  80. Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: A review on recent perspectives and patents. Opin Ther Pat. 2020;30(3):179-194.
  81. Mirchandani Y, Patravale VB, Brijesh S. Solid lipid nanoparticles for hydrophilic drugs. J Control Release. 2021;335:457-464.
  82. Mendoza-Munoz N, Urbán-Morlán Z, Leyva-Gómez G, de la Luz Zambrano-Zaragoza M, Quintanar-Guerrero D. Solid lipid nanoparticles: an approach to improve oral drug delivery. J Pharm Pharm Sci. 2021;24:509-532.
  83. Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:319.
  84. Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces. 2020;196:111305.
  85. Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V, Abraham MC, et al. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics. 2022;14(9):1886.
  86. Satapathy MK, Yen T-L, Jan J-S, Tang R-D, Wang J-Y, Taliyan R, Yang C-H. Solid lipid nanoparticles (SLNs): an advanced drug delivery system targeting brain through BBB. Pharmaceutics. 2021;13(8):1183.
  87. Liu B, Han L, Liu J, Han S, Chen Z, Jiang L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int J Nanomedicine. 2017:955-968.
  88. Costa CP, Moreira JN, Lobo JMS, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B. 2021;11(4):925-940.
  89. Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi D-K. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine. 2018:1569-1583.
  90. Garcês A, Amaral M, Lobo JS, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci. 2018;112:159-167.
  91. Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Sci. 2014;86(1):7-22.
  92. Pimentel-Moral S, Teixeira M, Fernandes A, Borrás-Linares I, Arráez-Román D, Martínez-Férez A, et al. Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology. J Drug Deliv Sci Technol. 2019;49:660-667.
  93. Assefi M, Ataeinaeini M, Nazari A, Gholipour A, Vertiz-Osores JJ, Calla-Vásquez KM, et al. A state-of-the-art review on solid lipid nanoparticles as a nanovaccines delivery system. J Drug Deliv Sci Technol. 2023:104623.
  94. Subroto E, Andoyo R, Indiarto R. Solid lipid nanoparticles: Review of the current research on encapsulation and delivery systems for active and antioxidant compounds. Antioxid. 2023;12(3):633.
  95. Mohammed HA, Khan RA, Singh V, Yusuf M, Akhtar N, Sulaiman GM, et al. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development. Nanotechnol Rev. 2023;12(1):20220517.
  96. López KL, Ravasio A, González-Aramundiz JV, Zacconi FC. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) prepared by microwave and ultrasound-assisted synthesis: Promising green strategies for the nanoworld. Pharmaceutics. 2023;15(5):1333.
  97. Harish V, Mohd S, Tewari D, Pandey NK, Vishwas S, Babu MR, et al. Unravelling the role of solid lipid nanoparticles in drug delivery: Journey from laboratory to clinical trial. J Drug Deliv Sci Technol. 2023:104616.
  98. Salminen H, Kasapoğlu KN, Özçelik B, & Weiss J. Stabilization of solid lipid nanoparticles with glycyrrhizin. Eur Food Res Technol. 2023;249(3):787-798.
  99. Chauhan I, Singh L. A comprehensive literature review of lipids used in the formulation of lipid nanoparticles. Curr Nanosci. 2023;8(2):126-152.
  100. Salunkhe S, Basak M, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J Control Release. 2020; 326:599-614.
  101. Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park I-k, Lee Y-k. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release. 2023; 353:1127-1149.
  102. Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomater. 2018;150:137-149.
  103. Wang C, Kimura K, Li J, Richardson JJ, Naito M, Miyata K, et al. Polydopamine‐Mediated Surface Functionalization of Exosomes. Chem Nano Mat. 2021;7(6):592-595.
  104. Zhao H, Wu M, Zhu L, Tian Y, Wu M, Li Y, et al. Cell-penetrating peptide-modified targeted drug-loaded phase-transformation lipid nanoparticles combined with low-intensity focused ultrasound for precision theranostics against hepatocellular carcinoma. Theranostics. 2018;8(7):1892.
  105. Aschmann D, Knol RA, Kros A. Lipid-based nanoparticle functionalization with coiled-coil peptides for in vitro and in vivo drug delivery. Acc Chem Res. 2024;57(8):1098-1110.
  106. Qin J, Xue L, Gong N, Zhang H, Shepherd SJ, Haley RM, et al. RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Advances. 2022;12(39):25397-25404.
  107. Zhang Y-L, Zhang Z-H, Jiang T-Y, Lv H-X, Zhou J-P. Cell uptake of paclitaxel solid lipid nanoparticles modified by cell-penetrating peptides in A549 cells. Pharmazie. 2013;68(1):47-53.