Chitosan-based nanocomposites and nanomaterials for drug delivery of antimicrobial agents: a review

Document Type : Review Paper

Authors

1 Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

5 Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

With the indiscriminate use of antibiotics and increasing environmental issues, microbial resistance has emerged as a serious and growing global challenge. Moreover, the discovery and development of new antimicrobial agents remain difficult, expensive, and time-consuming. Therefore, the use of advanced drug delivery systems that enhance drug efficacy while reducing side effects has been proposed as a promising alternative strategy. To collect relevant literature, databases such as PubMed and Scopus, as well as search engines such as Google Scholar, were used. Nanomaterials—including nanocomposites, nanoparticles, nanoclays, and nanofibers—play a critical role in these delivery systems. Among them, chitosan, a non-toxic natural polymer with inherent antimicrobial properties, is fundamental because it can overcome many of the limitations of conventional delivery systems. Combining antimicrobial compounds with chitosan not only facilitates effective drug delivery but can also produce synergistic effects, thereby enhancing antimicrobial activity, improving bioavailability, prolonging release, and reducing microbial resistance. The structural characteristics of chitosan, such as its mucoadhesive properties, enable strong binding to biological tissues, which can be further modified for targeted delivery of antimicrobial agents. Chitosan-based nanocomposites also exhibit a high loading capacity for antibacterial agents, owing to their porous architecture, large surface area, and abundant functional groups that facilitate efficient drug binding. Recent advances emphasize the potential of these materials in treating bacterial infections, particularly in wound dressings, biomedical implants, and mucosal drug delivery systems. This review highlights various antimicrobial agents that can be incorporated into chitosan-based nanomaterials, including antibiotics, antifungals, metallic nanoparticles, antivirals, and other bioactive compounds such as toxins and natural products.

Keywords

Main Subjects


  1. Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of nanotechnology in medical field: a brief review. Glob Health J. 2023; 7(2): 70-77.
  2. Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery. Biomed Rep. 2021; 14(5): 42.
  3. Omanović-Mikličanin E, Badnjević A, Kazlagić A, Hajlovac M. Nanocomposites: a brief review. Health Technol. 2020; 10(1): 51-59.
  4. Muhammed Shameem M, Sasikanth SM, Annamalai R, Ganapathi Raman R. A brief review on polymer nanocomposites and its applications. Mater Today Proc. 2021; 45: 2536-2539.
  5. Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018; 109: 273-286.
  6. Azmana M, Mahmood S, Hilles AR, Rahman A, Arifin MAB, Ahmed S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int J Biol Macromol. 2021; 185: 832-848.
  7. Dahiya MS, Tomer VK, Duhan S. 31 - Metal–ferrite nanocomposites for targeted drug delivery. In: Inamuddin, Asiri AM, Mohammad A, editors. Applications of nanocomposite materials in drug delivery: Woodhead Publishing; 2018;737-760.
  8. Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al‐Ouqaili MT, Chinedu Ikem J, Victor Chigozie U, et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022; 36(9): e24655.
  9. Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations. Pharm. 2020; 12(2): 142.
  10. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018; 11(null): 1645-1658.
  11. Rezaei M, Hama NH. Antibacterial, antifungal, antiviral, and anticancer activities of chitosan and its derivatives: Basic mechanisms. Micro Nano Bio Asp. 2024; 3(1): 23-28.
  12. Kim S. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti‐inflammatory activities. Int J Polym Sci. 2018; 2018(1): 1708172.
  13. Subramani G, Manian R. Bioactive chitosan films: Integrating antibacterial, antioxidant, and antifungal properties in food packaging. Int J Biol Macromol. 2024; 278: 134596.
  14. Abdel-Bary AS, Tolan DA, Nassar MY, Taketsugu T, El-Nahas AM. Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int J Biol Macromol. 2020; 154: 621-633.
  15. Confederat LG, Tuchilus CG, Dragan M, Sha’at M, Dragostin OM. Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules. 2021; 26(12): 3694.
  16. Jamil B, Habib H, Abbasi SA, Ihsan A, Nasir H, Imran M. Development of cefotaxime impregnated chitosan as nano-antibiotics: De novo strategy to combat biofilm forming multi-drug resistant pathogens. Front Microbiol. 2016; 7.
  17. Pagano L, Fernández OM. Clinical aspects and recent advances in fungal diseases impacting human health. J Antimicrob Chemother. 2025; 80(Supplement_1): i2-i8.
  18. Biersack B. Special Issue “Antifungal drug discovery: Progresses, challenges, opportunities”. Int J Mol Sci. 2025; 26(5): 2065.
  19. Calvo NL, Sreekumar S, Svetaz LA, Lamas MC, Moerschbacher BM, Leonardi D. Design and characterization of chitosan nanoformulations for the delivery of antifungal agents. Int J Mol Sci. 2019; 20(15): 3686.
  20. Olliaro P, Torreele E. Global challenges in preparedness and response to epidemic infectious diseases. Mol Ther. 2022; 30(5): 1801-1809.
  21. Jaber N, Al‐Remawi M, Al‐Akayleh F, Al‐Muhtaseb N, Al‐Adham IS, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID‐19. J Appl Microbiol. 2022; 132(1) :41-58.
  22. Shohani S, Mondanizadeh M, Abdoli A, Khansarinejad B, Salimi-Asl M, Ardestani MS, et al. Trimethyl chitosan improves anti-HIV effects of atripla as a new nanoformulated drug. Curr HIV Res. 2017; 15(1): 56-65.
  23. Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, et al. Chitosan: An overview of its properties and applications. Polym. 2021 ;13(19): 3256.
  24. Haider A, Khan S, Iqbal DN, Shrahili M, Haider S, Mohammad K, et al. Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. Eur Polym J. 2024; 210: 112983.
  25. Zhao X, Lu C, Yang S, Ni R, Peng T, Zhang J. Synthesis of N, N, N-trimethyl chitosan-based nanospheres for the prolonged release of curcumin. Food Hydrocoll Health. 2022; 2: 100092.
  26. Li S, Lv H, Chen Y, Song H, Zhang Y, Wang S, et al. N-trimethyl chitosan coated targeting nanoparticles improve the oral bioavailability and antioxidant activity of vitexin. Carbohydr Polym. 2022; 286: 119273.
  27. Seyam S, Choukaife H, Al Rahal O, Alfatama M. Colonic targeting insulin-loaded trimethyl chitosan nanoparticles coated pectin for oral delivery: In vitro and In vivo studies. Int J Biol Macromol. 2024; 281: 136549.
  28. Nemati Shizari L, Mohammadpour Dounighi N, Bayat M, Mosavari N. A new amphotericin B-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on Candida albicans biofilm. Arch Razi Inst. 2021; 76(3): 571-586.
  29. Nagy V, Quader S, Másson M. Fine-tuning the cytotoxicity profile of N,N,N-trimethyl chitosan through trimethylation, molecular weight, and polyelectrolyte complex nanoparticles. Int J Biol Macromol. 2024; 281: 135805.
  30. Enggardipta RA, Akizuki M, Bando M, Inagaki Y, Sekine K, Hamada K, et al. Trimethyl chitosan: Antibacterial activity on Enterococcus faecalis biofilm and cytocompatibility on human periodontal ligament fibroblasts cells. J Dent Sci. 2025.
  31. Jha R, Mayanovic RA. A review of the preparation, characterization, and applications of chitosan nanoparticles in nanomedicine. Nanomater. 2023; 13(8): 1302.
  32. Grewal AK, Salar RK. Chitosan nanoparticle delivery systems: An effective approach to enhancing efficacy and safety of anticancer drugs. Nano TransMed. 2024; 3: 100040.
  33. Abdel-Moneim A, El-Shahawy A, Yousef AI, Abd El-Twab SM, Elden ZE, Taha M. Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: In silico, in vitro and in vivo approaches. Int J Biol Macromol. 2020; 154: 1496-1504.
  34. NS SA, Pillai DS, Shanmugam R. The antifungal activity of chitosan nanoparticle-incorporated probiotics against oral candidiasis. Cureus. 2024; 16(9).
  35. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Zainol Hilmi NH, et al. Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules. 2019; 24(13): 2498.
  36. Saikia S, Chetia P. Antibiotics: From mechanism of action to resistance and beyond. Indian J Microbiol. 2024; 64(3): 821-845.
  37. Etebu E, Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res. 2016; 4(2016): 90-101.
  38. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharm. 2023; 16(11): 1615.
  39. Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev. 2021; 177: 113948.
  40. Fasiku VO, Omolo CA, Devnarain N, Ibrahim UH, Rambharose S, Faya M, et al. Chitosan-based hydrogel for the dual delivery of antimicrobial agents against bacterial methicillin-resistant Staphylococcus aureus biofilm-infected wounds. ACS Omega. 2021; 6(34): 21994-22010.
  41. Jirofti N, Shahroodi A, Movaffagh J, Fazly Bazzaz BS, Yazdian-Robati R, Hashemi M. Fabrication and structural, mechanical, and biological characterization of vancomycin-loaded chitosan-hydroxyapatite-gelatin beads for local treatment of osteomyelitis. J Mazandaran Univ Med Sci. 2023; 33(220): 1-18.
  42. Shah S, Ghetiya R, Soniwala M, Chavda J. Development and optimization of inhalable levofloxacin nanoparticles for the treatment of tuberculosis. Curr Drug Deliv. 2021; 18(6): 779-793.
  43. Güncüm E, Işıklan N, Anlaş C, Bulut E, Bakırel T. Preparation, characterization, and evaluation of antibacterial and cytotoxic activity of chitosan-polyethylene glycol nanoparticles loaded with amoxicillin as a novel drug delivery system. J Biomater Sci Polym Ed. 2023; 34(12): 1660-1682.
  44. Zhao Z, Han J, Xu S, Jin Z, Yin TH, Zhao K. Amoxicillin encapsulated in the N-2-hydroxypropyl trimethyl ammonium chloride chitosan and N,O-carboxymethyl chitosan nanoparticles: Preparation, characterization, and antibacterial activity. Int J Biol Macromol. 2022; 221: 613-622.
  45. Nguyen VN, Wang S-L, Nguyen TH, Nguyen VB, Doan MD, Nguyen AD. Preparation and characterization of chitosan/starch nanocomposites loaded with ampicillin to enhance antibacterial activity against Escherichia coli. Polym. 2024; 16(18): 2647.
  46. Duceac LD, Calin G, Eva L, Marcu C, Bogdan Goroftei ER, Dabija MG, et al. Third-generation cephalosporin-loaded chitosan used to limit microorganisms resistance. Mater. 2020; 13(21): 4792.
  47. El-Assal MI, El-Menofy NG. Chitosan nanoparticles as drug delivery system for cephalexin and its antimicrobial activity against multiidrug resistent bacteria. Int J Pharm Pharm Sci. 2019; 11(7): 14-27.
  48. Bin-Jumah M, Gilani SJ, Jahangir MA, Zafar A, Alshehri S, Yasir M, et al. Clarithromycin-loaded ocular chitosan nanoparticle: formulation, optimization, characterization, ocular irritation, and antimicrobial activity. Int J Nanomed. 2020; 15(null): 7861-7875.
  49. Jalal RR, Ways TMM, Abu Elella MH, Hassan DA, Khutoryanskiy VV. Preparation of mucoadhesive methacrylated chitosan nanoparticles for delivery of ciprofloxacin. Int J Biol Macromol. 2023; 242: 124980.
  50. Han K, Sathiyaseelan A, Saravanakumar K, Park S-y, Shin S, Choi HB, et al. Biomimetic hydroxyapatite-chitosan nanoparticles deliver the erythromycin for improved antibacterial activity. J Drug Deliv Sci Technol. 2022; 72: 103374.
  51. Hassan HAFM, Ali AI, ElDesawy EM, ElShafeey AH. Pharmacokinetic and pharmacodynamic evaluation of gemifloxacin chitosan nanoparticles as an antibacterial ocular dosage form. J Pharm Sci. 2022; 111(5): 1497-1508.
  52. Quilumbango A, Briceño S, Ponce JF, Vizuete K, Debut A, Botas JA, et al. Chitosan-collagen-cerium hydroxyapatite nanocomposites for In-vitro gentamicin drug delivery and antibacterial properties. Carbon Trends. 2024; 16: 100392.
  53. Asgarirad H, Pedram E, Ali MM, Mohammad J, Hamed M, Ramin A, et al. A promising technology for wound healing; in-vitro and in-vivo evaluation of chitosan nano-biocomposite films containing gentamicin. J Microencapsul. 2021; 38(2): 100-107.
  54. Ameeduzzafar, Imam SS, Abbas Bukhari SN, Ahmad J, Ali A. Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: In-vitro characterization, ocular tolerance and antibacterial activity. Int J Biol Macromol. 2018; 108: 650-659.
  55. De Gaetano F, Marino A, Marchetta A, Bongiorno C, Zagami R, Cristiano MC, et al. Development of chitosan/cyclodextrin nanospheres for levofloxacin ocular delivery. Pharm. 2021; 13(8): 1293.
  56. Alkholief M, Kalam MA, Alshememry AK, Ali R, Alhudaithi SS, Alsaleh NB, et al. Topical application of linezolid–loaded chitosan nanoparticles for the treatment of eye infections. Nanomater. 2023; 13(4): 681.
  57. Sreeharsha N, Rajpoot K, Tekade M, Kalyane D, Nair AB, Venugopala KN, et al. Development of metronidazole loaded chitosan nanoparticles using QbD approach—A novel and potential antibacterial formulation. Pharm. 2020; 12(10): 920.
  58. Cadinoiu AN, Rata DM, Daraba OM, Atanase LI, Horhogea CE, Chailan J-F, et al. Metronidazole-loaded chitosan nanoparticles with antimicrobial activity against Clostridium perfringens. Pharm. 2025; 17(3): 294.
  59. Mohan P, Rangari VD, Kesavan K. Cationic chitosan/pectin polyelectrolyte nanocapsules of moxifloxacin as novel topical management system for bacterial keratitis. Curr Eye Res. 2022; 47(11): 1498-1507.
  60. Almajidi YQ, Muslim RK, Issa AA, Al-Musawi MH, Shahriari-Khalaji M, Mirhaj M. Three-dimensional printed polyelectrolyte construct containing mupirocin-loaded quaternized chitosan nanoparticles for skin repair. Int J Biol Macromol. 2024; 280: 136214.
  61. Amiri N, Ajami S, Shahroodi A, Jannatabadi N, Amiri Darban S, Fazly Bazzaz BS, et al. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol. 2020; 162: 645-656.
  62. Alqahtani MS, Said RHM. Immunohistochemical analysis to evaluate the efficacy of tetracycline‐loaded nano‐chitosan in treating periodontitis induced by Porphyromonas gingivalis in albino rats. Int J Dent. 2025; 2025(1): 1959086.
  63. Javed S, Abbas G, Shah S, Rasul A, Irfan M, Saleem A, et al. Tobramycin-loaded nanoparticles of thiolated chitosan for ocular drug delivery: Preparation, mucoadhesion and pharmacokinetic evaluation. Heliyon. 2023; 9(9).
  64. Reddy GKK, Padmavathi AR, Nancharaiah YV. Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Curr Res Microbial Sci. 2022; 3: 100137.
  65. Fang W, Wu J, Cheng M, Zhu X, Du M, Chen C, et al. Diagnosis of invasive fungal infections: challenges and recent developments. J Biomed Sci. 2023; 30(1): 42.
  66. von Lilienfeld-Toal M, Wagener J, Einsele H, Cornely OA, Kurzai O. Invasive fungal infection. Dtsch Arztebl Int. 2019; 116(16): 271-278.
  67. Hoenigl M, Seidel D, Sprute R, Cunha C, Oliverio M, Goldman GH, et al. COVID-19-associated fungal infections. Nat Microbiol. 2022; 7(8): 1127-1140.
  68. Chen L, Zhang L, Xie Y, Wang Y, Tian X, Fang W, et al. Confronting antifungal resistance, tolerance, and persistence: Advances in drug target discovery and delivery systems. Adv Drug Deliv Rev. 2023; 200: 115007.
  69. Bouz G, Doležal M. Advances in antifungal drug development: An up-to-date mini review. Pharm. 2021; 14(12): 1312.
  70. Kontogiannidou E, Meikopoulos T, Virgiliou C, Bouropoulos N, Gika H, Vizirianakis IS, et al. Towards the development of self-nano-emulsifying drug delivery systems (SNEDDS) containing trimethyl chitosan for the oral delivery of amphotericin B: In vitro assessment and cytocompatibility studies. J Drug Deliv Sci Technol. 2020; 56: 101524.
  71. Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B–chitosan–dextran sulfate nanoparticles. Int J Pharm. 2007; 329(1): 142-149.
  72. Ribeiro TG, Franca JR, Fuscaldi LL, Santos ML, Duarte MC, Lage PS, et al. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int J Nanomed. 2014; 9(null): 5341-5353.
  73. Nemati Shizari L, Mohammadpour Dounighi N, Bayat M, Mosavari N. A new amphotericin B-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on Candida albicans biofilm. Arch Razi Inst. 2021; 76(3): 571-586.
  74. Sandhya M, V A, Maneesha K S, Raja B, R J, S S. Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections. Int J Biol Macromol. 2018; 110: 133-139.
  75. Mathew D, Thomas B, NM S, George J, EK R. Trimethyl chitosan-based amphotericin B nanoparticles: Improved gastrointestinal stability, hemocompatibility, monomeric stabilization, and controlled drug release. BioNanoSci. 2025; 15(3): 1-24.
  76. Khotcharrat R, Srinivas SP, Thongsri Y, Thongsuk W. In vitro antifungal activity of amphotericin B-encapsulated silk fibroin-chitosan nanoparticles against Fusarium solani isolates from keratitis patients. Pharm. 2025; 17(9): 1170.
  77. Facchinatto WM, Galante J, Mesquita L, Silva DS, Martins dos Santos D, Moraes TB, et al. Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomater. 2021; 125: 312-321.
  78. Hemmingsen LM, Panzacchi V, Kangu LM, Giordani B, Luppi B, Škalko-Basnet N. Lecithin and chitosan as building blocks in anti-candida clotrimazole nanoparticles. Pharm. 2023; 16(6): 790.
  79. Sankar V, Selvakumar R, Narmadha R, Jaishree VG. Enhanced therapeutic approach for vaginal candidiasis: chitosan nanoparticulate thermoreversible in situ gels for sustained clotrimazole delivery. 3 Biotech. 2025; 15(4): 71.
  80. Hatamiazar M, Mohammadnejad J, Khaleghi S. Chitosan-albumin nanocomposite as a promising nanocarrier for efficient delivery of fluconazole against vaginal candidiasis. Appl Biochem Biotechnol. 2024; 196(2): 701-716.
  81. Santhi K, Muralidharan S, H Yee Y, Y Min F, Z Ting C, Devi D. In-vitro characterization of chitosan nanoparticles of fluconazole as a carrier for sustained ocular delivery. Nanosci Nanotechnol - Asia. 2017; 7(1): 41-50.
  82. Kolge H, Patil G, Jadhav S, Ghormade V. A pH-tuned chitosan-PLGA nanocarrier for fluconazole delivery reduces toxicity and improves efficacy against resistant Candida. Int J Biol Macromol. 2023; 227: 453-461.
  83. Dhiman P, Bhatia M. Ketoconazole loaded quaternized chitosan nanoparticles-PVA film: preparation and evaluation. Polym Bull. 2022; 79(2): 1001-1019.
  84. Gamil Y, Hamed MG, Elsayed M, Essawy A, Medhat S, Zayed SO, et al. The anti-fungal effect of miconazole and miconazole-loaded chitosan nanoparticles gels in diabetic patients with Oral candidiasis-randomized control clinical trial and microbiological analysis. BMC Oral Health. 2024; 24(1): 196.
  85. Amaral AC, Saavedra PHV, Oliveira Souza AC, de Melo MT, Tedesco AC, Morais PC, et al. Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf B Biointerfaces. 2019; 174: 409-415.
  86. Pervaiz F, Mushtaq R, Noreen S. Formulation and optimization of terbinafine HCl loaded chitosan/xanthan gum nanoparticles containing gel: Ex-vivo permeation and in-vivo antifungal studies. J Drug Deliv SciTechnol. 2021; 66: 102935.
  87. Ullah KH, Rasheed F, Naz I, Ul Haq N, Fatima H, Kanwal N, et al. Chitosan nanoparticles loaded poloxamer 407 gel for transungual delivery of terbinafine HCl. Pharm. 2022; 14(11): 2353.
  88. Shah MKA, Azad AK, Nawaz A, Ullah S, Latif MS, Rahman H, et al. Formulation development, characterization and antifungal evaluation of chitosan NPs for topical delivery of voriconazole In Vitro and Ex Vivo. Polym. 2022; 14(1): 135.
  89. Mohammadzadeh S, Shahsavari S, Karimian F, Hashemi SJ, Akbari Javar H, Mollabagher H. Development and characterization of optimized sustained release voriconazole-loaded chitosan nanoparticles for ocular delivery. J Particle SciTechnol. 2021; 7(1): 1-10.
  90. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019; 12(7): 908-931.
  91. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C. 2014; 44: 278-284.
  92. Ahmad F, Salem-Bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, et al. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application. Nanomater. 2022; 12(8): 1333.
  93. Franco D, Calabrese G, Guglielmino SPP, Conoci S. Metal-based nanoparticles: antibacterial mechanisms and biomedical application. Microorganisms. 2022; 10(9): 1778.
  94. Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J Funct Biomater. 2023; 14(5): 244.
  95. Gholamali I, Yadollahi M. Bio-nanocomposite polymer hydrogels containing nanoparticles for drug delivery: a review. Regen Eng Transl Med. 2021; 7(2): 129-146.
  96. Ashrafi M, Bayat M, Mortazavi SP, Hashemi SJ, Meimandipour A. Antimicrobial effect of chitosan silver copper nanocomposite on Candida albicans in immunosuppressive rats. J Vet Clin Pathol. 2022; 16(61): fa15-fa27.
  97. Krishnaraj C, Radhakrishnan S, Ramachandran R, Ramesh T, Kim B-S, Yun S-I. In vitro toxicological assessment and biosensing potential of bioinspired chitosan nanoparticles, selenium nanoparticles, chitosan/selenium nanocomposites, silver nanoparticles and chitosan/silver nanocomposites. Chemosphere. 2022; 301: 134790.
  98. Wang D, Yin C, Bai Y, Zhou M, Wang N, Tong C, et al. Chitosan-modified AgNPs efficiently inhibit Swine Coronavirus-induced host cell infections via targeting the spike protein. Biomol. 2024; 14(9): 1152.
  99. Hashem AH, Shehabeldine AM, Ali OM, Salem SS. Synthesis of chitosan-based gold nanoparticles: Antimicrobial and wound-healing activities. Polym. 2022; 14(11): 2293.
  100. Regiel-Futyra A, Kus-Liśkiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, et al. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces. 2015; 7(2): 1087-1099.
  101. Mendoza G, Regiel-Futyra A, Andreu V, Sebastián V, Kyzioł A, Stochel G, et al. Bactericidal effect of gold-chitosan nanocomposites in coculture models of pathogenic bacteria and human macrophages. ACS Appl Mater Interfaces. 2017; 9(21): 17693-17701.
  102. Qian J, Pan C, Liang C. Antimicrobial activity of Fe‐loaded chitosan nanoparticles. Eng Life Sci. 2017; 17(6): 629-634.
  103. Ahmed T, Noman M, Luo J, Muhammad S, Shahid M, Ali MA, et al. Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. Int J Biol Macromol. 2021; 168: 834-845.
  104. Chouhan D, Dutta A, Kumar A, Mandal P, Choudhuri C. Application of nickel chitosan nanoconjugate as an antifungal agent for combating Fusarium rot of wheat. Sci Rep. 2022; 12(1): 14518.
  105. Korniienko V, Husak Y, Diedkova K, Varava Y, Grebnevs V, Pogorielova O, et al. Antibacterial potential and biocompatibility of chitosan/polycaprolactone nanofibrous membranes incorporated with silver nanoparticles. Polym. 2024; 16(12): 1729.
  106. Fereydouni N, Zangouei M, Darroudi M, Hosseinpour M, Gholoobi A. Antibacterial activity of chitosan-polyethylene oxide nanofibers containing silver nanoparticles against aerobic and anaerobic bacteria. J Mol Struct. 2023; 1274: 134304.
  107. El-Ganainy SM, Soliman AM, Ismail AM, Sattar MN, Farroh KY, Shafie RM. Antiviral activity of chitosan nanoparticles and chitosan silver nanocomposites against Alfalfa Mosaic Virus. Polym. 2023; 15(13): 2961.
  108. Dananjaya SHS, Erandani WKCU, Kim C-H, Nikapitiya C, Lee J, De Zoysa M. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int J Biol Macromol. 2017; 105: 478-488.
  109. Sanmugam A, Shanthi D, Sairam AB, Kumar RS, Almansour AI, Arumugam N, et al. Fabrication of chitosan/fibrin-armored multifunctional silver nanocomposites to improve antibacterial and wound healing activities. Int J Biol Macromol. 2024; 257: 128598.
  110. Abdel-Wahed R, Hemdan BA, Bayoumi H, Lu X, Aleem AAHA, Eisa WH, et al. Solid-state tailored silver nanocomposites from chitosan: Synthesis, antimicrobial evaluation and molecular docking. Int J Biol Macromol. 2025; 307: 141833.
  111. Anwar Y, Jaha HF, Ul-Islam M, Kamal T, Khan SB, Ullah I, et al. Development of silver-doped copper oxide and chitosan nanocomposites for enhanced antimicrobial activities. Z Naturforsch C. 2024; 79(5-6): 137-148.
  112. Ashrafi M, Bayat M, Mortazavi P, Hashemi SJ, Meimandipour A. Antimicrobial effect of chitosan–silver–copper nanocomposite on Candida albicans. J Nanostruct Chem. 2020; 10(1): 87-95.
  113. Qi J, Zhang J, Jia H, Guo X, Yue Y, Yuan Y, et al. Synthesis of silver/Fe3O4@chitosan@polyvinyl alcohol magnetic nanoparticles as an antibacterial agent for accelerating wound healing. Int J Biol Macromol. 2022; 221: 1404-1414.
  114. Siripatrawan U, Kaewklin P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll. 2018; 84: 125-134.
  115. Shaban NZ, Yehia SA, Shoueir KR, Saleh SR, Awad D, Shaban SY. Design, DNA binding and kinetic studies, antibacterial and cytotoxic activities of stable dithiophenolato titanium(IV)-chitosan nanocomposite. J Mol Liq. 2019; 287: 111002.
  116. Preethi S, Abarna K, Nithyasri M, Kishore P, Deepika K, Ranjithkumar R, et al. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Int J Biol Macromol. 2020; 164: 2779-2787.
  117. Bharathi D, Ranjithkumar R, Chandarshekar B, Bhuvaneshwari V. Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: As a bionanocomposite. Int J Biol Macromol. 2019; 129: 989-996.
  118. Al-Harmooshee AHW, Homayouni Tabrizi M, Hayati Roodbari N. In vitro pro-apoptotic and anti-metastatic potentials of harmaline-silver containing folate-linked chitosan nano-drug delivery system. Iran J Basic Med Sci. 2024; 27(2): 180-187.
  119. Shoorgashti R, Shahrzad H, Nowroozi S, Ghadamgahi B, Mehrara R, Oroojalian F. Evaluation of the antibacterial and cytotoxic activities of Ag/ZnO nanoparticles loaded polycaprolactone/chitosan composites for dental applications. Nanomed J. 2023; 10(1).
  120. Alizadeh S, Farshi P, Farahmandian N, Ahovan ZA, Hashemi A, Majidi M, et al. Synergetic dual antibiotics-loaded chitosan/poly (vinyl alcohol) nanofibers with sustained antibacterial delivery for treatment of XDR bacteria-infected wounds. Int J Biol Macromol. 2023; 229: 22-34.
  121. Derakhshan-sefidi M, Bakhshi B, Rasekhi A. Thiolated chitosan nanoparticles encapsulated nisin and selenium: antimicrobial/antibiofilm/anti-attachment/immunomodulatory multi-functional agent. BMC Microbiol. 2024; 24(1): 257.
  122. Arghand N, Reiisi S, Karimi B, Khorasgani EM, Heidari R. Biosynthesis of nanocomposite alginate-chitosan loaded with silver nanoparticles coated with eugenol/quercetin to enhance wound healing. BioNanoSci. 2024; 14(5): 5149-5166.
  123. Saghafi Y, Baharifar H, Najmoddin N, Asefnejad A, Maleki H, Sajjadi-Jazi SM, et al. Bromelain- and Silver nanoparticle-loaded polycaprolactone/chitosan nanofibrous dressings for skin wound healing. Gels. 2023; 9(8): 672.
  124. da Silva JT, Dantas de Sousa PH, Costa AF, de Menezes LB, Alves SF, Pellegrini F, et al. Fluconazole and propolis co-encapsulated in chitosan nanoparticles for the treatment of vulvovaginal candidiasis in a murine model. Med Mycol. 2023; 61(11).
  125. Zhang Y, Li P, Su R, Wen F, Jia Z, Lv Y, et al. Curcumin-loaded multifunctional chitosan gold nanoparticles: An enhanced PDT/PTT dual-modal phototherapeutic and pH-responsive antimicrobial agent. Photodiagnosis Photodyn Ther. 2022; 39: 103011.
  126. Hussein MAM, Grinholc M, Dena ASA, El-Sherbiny IM, Megahed M. Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract. Carbohydr Polym. 2021; 256: 117498.
  127. Elshaer EE, Elwakil BH, Eskandrani A, Elshewemi SS, Olama ZA. Novel clotrimazole and Vitis vinifera loaded chitosan nanoparticles: Antifungal and wound healing efficiencies. Saudi J Biol Sci. 2022; 29(3): 1832-1841.
  128. Cui X, Li X, Xu Z, Guan X, Ma J, Ding D, et al. Fabrication and characterization of chitosan/poly (lactic-co-glycolic acid) core-shell nanoparticles by coaxial electrospray technology for dual delivery of natamycin and clotrimazole. Front Bioeng Biotechnol. 2021 ;9: 635485.
  129. Abdel-Hakeem MA, Abdel Maksoud AI, Aladhadh MA, Almuryif KA, Elsanhoty RM, Elebeedy D. Gentamicin–ascorbic acid encapsulated in chitosan nanoparticles improved In vitro antimicrobial activity and minimized cytotoxicity. Antibiot. 2022; 11(11): 1530.
  130. Donalisio M, Leone F, Civra A, Spagnolo R, Ozer O, Lembo D, et al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharm. 2018; 10(2): 46.
  131. Donalisio M, Argenziano M, Rittà M, Bastiancich C, Civra A, Lembo D, et al. Acyclovir-loaded sulfobutyl ether-β-cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. Int J Pharm. 2020; 587: 119676.
  132. Argenziano M, Arduino I, Rittà M, Molinar C, Feyles E, Lembo D, et al. Enhanced anti-herpetic activity of valacyclovir loaded in sulfobutyl-ether-β-cyclodextrin-decorated chitosan nanodroplets. Microorganisms. 2023; 11(10): 2460.
  133. Safer A-M, Leporatti S. Chitosan nanoparticles for antiviral drug delivery: A Novel route for COVID-19 treatment. Int J Nanomed. 2021; 16(null): 8141-8158.
  134. Rahnama S, Movaffagh J, Shahroodi A, Jirofti N, Fazly Bazzaz BS, Beyraghdari M, et al. Development and characterization of the electrospun melittin-loaded chitosan nanofibers for treatment of acne vulgaris in animal model. J Ind Text. 2022; 52: 15280837221112410.
  135. Sohail A, Khan RU, Khan M, Khokhar M, Ullah S, Ali A, et al. Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica. Bull Natl Res Cent. 2021; 45(1): 187.
  136. Goel S, Bano Y. Chapter 13 - Chitosan-based nanofibrous membranes for antibacterial filter applications. In: Singh AK, Dhayal M, Hussain CM, editors. Antimicrobial Materials and Coatings: Woodhead Publishing; 2025; 425-447.
  137. Khubiev OM, Egorov AR, Kirichuk AA, Khrustalev VN, Tskhovrebov AG, Kritchenkov AS. Chitosan-based antibacterial films for biomedical and food applications. Int J Mol Sci. 2023; 24(13): 10738.
  138. Ghalavand M, Saadati M, Salimian J, Abbasi E, Hosseinzadeh G, Gouvarchin Ghaleh HE, et al. Biological properties the novel application of N-trimethyl chitosan nanospheres as a stabilizer and preservative in tetanus vaccine. Clin Exp Vaccine Res. 2021; 10(1): 24-34.
  139. Tafaghodi M, Kersten G, Jiskoot W. Original research nano-adjuvanted polio vaccine: Preparation and characterization of chitosan and trimethylchitosan (TMC) nanoparticles loaded with inactivated polio virus and coated with sodium alginate. Nanomed J. 2014; 1(4): 220-228.
  140. Seyyed Tabaei SJ, Rahimi M, Akbaribazm M, Ziai SA, Sadri M, Shahrokhi SR, et al. Chitosan-based nano-scaffolds as antileishmanial wound dressing in BALB/c mice treatment: Characterization and design of tissue regeneration. Iran J Basic Med Sci. 2020; 23(6): 788-799.
  141. Ibrahim MA, Alhalafi MH, Emam E-AM, Ibrahim H, Mosaad RM. A review of chitosan and chitosan nanofiber: Preparation, characterization, and its potential applications. Polym. 2023; 15(13): 2820.
  142. Kalantari K, Afifi AM, Jahangirian H, Webster TJ. Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review. Carbohydr Polym. 2019; 207: 588-600.
  143. Tao F, Cheng Y, Shi X, Zheng H, Du Y, Xiang W, et al. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym. 2020; 230: 115658.
  144. Al-Jbour ND, Beg MD, Gimbun J, Alam AM. An overview of chitosan nanofibers and their applications in the drug delivery process. Curr Drug Deliv. 2019; 16(4): 272-294.
  145. Tamilarasi GP, Sabarees G, Manikandan K, Gouthaman S, Alagarsamy V, Solomon VR. Advances in electrospun chitosan nanofiber biomaterials for biomedical applications. Mater Adv. 2023; 4(15): 3114-3139.
  146. Liu X, Wang S, Ding C, Zhao Y, Zhang S, Sun S, et al. Polyvinylpyrrolidone/chitosan-loaded dihydromyricetin-based nanofiber membrane promotes diabetic wound healing by anti-inflammatory and regulating autophagy-associated protein expression. Int J Biol Macromol. 2024; 259: 129160.
  147. Yu H, Chen D, Lu W, Zhang C, Wang H, Peng Z, et al. Characterization of polyvinyl alcohol/chitosan nanofibers loaded with royal jelly by blending electrospinning for potential wound dressings. Int J Biol Macromol. 2025; 307: 141977.
  148. Hameed M, Rasul A, Nazir A, Yousaf AM, Hussain T, Khan IU, et al. Moxifloxacin-loaded electrospun polymeric composite nanofibers-based wound dressing for enhanced antibacterial activity and healing efficacy. Int J Polym Mater Polym Biomater. 2021; 70(17): 1271-1279.
  149. Cibotaru S, Anisiei A, Platon V-M, Rosca I, Sandu I-A, Coman C-G, et al. Imino-quaternized chitosan/chitosan nanofibers loaded with norfloxacin as potential bandages for wound healing. Int J Biol Macromol. 2025: 144304.
  150. Tien ND, Lyngstadaas SP, Mano JF, Blaker JJ, Haugen HJ. Recent developments in chitosan-based micro/nanofibers for sustainable food packaging, smart textiles, cosmeceuticals, and biomedical applications. Molecules. 2021; 26(9).
  151. Arkoun M, Daigle F, Holley RA, Heuzey MC, Ajji A. Chitosan-based nanofibers as bioactive meat packaging materials. Packag Technol Sci. 2018; 31(4): 185-195.