Comparative evaluation of cytotoxicity and inflammatory responses induced by free and eugenol-loaded titanium dioxide nanoparticles following intraperitoneal injection in mouse

Document Type : Research Paper

Authors

1 Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran

2 Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran

3 Department of Pathobiology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

10.22038/nmj.2025.90454.2286

Abstract

Objective(s): Titanium dioxide nanoparticles (TiO₂ NPs), which are widely used in food and consumer products, have been associated with oxidative stress and inflammatory toxicity. Eugenol, a naturally occurring phenolic compound with well-established anti-inflammatory and antioxidant properties, may exert protective effects when delivered through nanocarriers.
Materials and Methods: TiO₂ nanoparticles were synthesized via a co-precipitation method and subsequently functionalized with eugenol (TiO₂@eugenol). FTIR, XRD, DLS, zeta potential analysis, FE-SEM, and TEM were used to characterize the nanoparticles. Thirty-six BALB/cJ mice were randomly assigned to six groups (n = 6 per group). They received intraperitoneal injections of free eugenol, TiO₂ nanoparticles, or TiO₂@eugenol at low (50 mg/kg) or high (200 mg/kg) doses for 14 days. Following the treatment period, serum concentrations of IL-1β, IL-6, and TNF-α were measured using ELISA; hepatic caspase-3/7 activity was assessed; and histological examinations of the liver, kidney, and spleen were performed. Gene expression of antioxidant markers (SOD3, GR, GPx) in liver tissue was evaluated by qRT-PCR.
Results: TiO₂ NPs significantly increased pro-inflammatory cytokines and hepatic caspase-3/7 activity. They also induced necrosis and inflammatory alterations in the liver, kidney, and spleen. In contrast, TiO₂@eugenol markedly suppressed cytokine release and apoptotic activity while preserving tissue architecture. qRT-PCR analysis showed that TiO₂ NPs downregulated antioxidant-related genes, whereas TiO₂@eugenol significantly upregulated their expression, indicating improved redox homeostasis.
Conclusion: Eugenol functionalization improved the biocompatibility profile of TiO₂ NPs and provided substantial protection against TiO₂-induced toxicity by attenuating inflammation, apoptosis, and oxidative stress while restoring antioxidant defenses. These findings highlight the therapeutic potential of eugenol-loaded TiO₂ nanoparticles and support further investigation in extended exposure models and disease-specific applications.

Keywords

Main Subjects


  1. McNeil SE. Nanotechnology for the biologist. J Leukoc Biol. 2005;78(3):585-594.
  2. Nath D, Banerjee P. Green nanotechnology–a new hope for medical biology. Environ Toxicol Pharmacol. 2013;36(3):997-1014.
  3. Chandoliya R, Sharma S, Sharma V, Joshi R, Sivanesan I. Titanium Dioxide Nanoparticle: A Comprehensive Review on Synthesis, Applications and Toxicity. Plants. 2024;13(21):2964.
  4. Irshad MA, Nawaz R, Ur Rehman MZ, Adrees M, Rizwan M, Ali S, et al. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicol Environ Saf. 2021;212:111978.
  5. Racovita AD. Titanium dioxide: structure, impact, and toxicity. Int J Environ Res Public Health. 2022;19(9):5681.
  6. Kendall M, Holgate S. Health impact and toxicological effects of nanomaterials in the lung. Respirology. 2012;17(5):743-758.
  7. Gao Y, Zhai H, She X, Si H. Quantitative structure-activity relationships; studying the toxicity of metal nanoparticles. Curr Top Med Chem. 2020;20(27):2506-2517.
  8. del Pilar Chantada-Vázquez M, López AC, Bravo SB, Vázquez-Estévez S, Acea-Nebril B, Núñez C. Proteomic analysis of the bio-corona formed on the surface of (Au, Ag, Pt)-nanoparticles in human serum. Colloids Surf B Biointerfaces. 2019;177:141-148.
  9. Lima T, Bernfur K, Vilanova M, Cedervall T. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci Rep. 2020;10(1):1129.
  10. Lee DS, Shin YK. Innate Immunity to Nanomaterials. Radionanomedicine. 2018:389-407.
  11. Perciani CT, Liu LY, Wood L, MacParland SA. Enhancing immunity with nanomedicine: employing nanoparticles to harness the immune system. ACS Nano. 2020;15(1):7-20.
  12. Tetley TD. Health effects of nanomaterials. Biochem Soc Trans. 2007;35(Pt 3):527-531.
  13. Wu T, Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol. 2018;38(1):25-40.
  14. Park E-J, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol lett. 2009;184(1):18-25.
  15. Tee JK, Ong CN, Bay BH, Ho HK, Leong DT. Oxidative stress by inorganic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(3):414-438.
  16. Domingues L, Carriello GM, Pegoraro GM, Mambrini GP. Synthesis of TiO2 nanoparticles by the solvothermal method and application in the catalysis of esterification reactions. An Acad Bras Cienc. 2024;96(suppl 3):e20240096.
  17. Santos-Aguilar P, Bernal-Ramírez J, Vázquez-Garza E, Vélez-Escamilla LY, Lozano O, García-Rivas GJ, et al. Synthesis and Characterization of Rutile TiO(2) Nanoparticles for the Toxicological Effect on the H9c2 Cell Line from Rats. ACS Omega. 2023;8(21):19024-19036.
  18. Barboza JN, da Silva Maia Bezerra Filho C, Silva RO, Medeiros JVR, de Sousa DP. An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol. Oxid Med Cell Longev. 2018;2018:39-57.
  19. Chaieb K, Hajlaoui H, Zmantar T, Kahla‐Nakbi AB, Rouabhia M, Mahdouani K, et al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res. 2007;21(6):501-506.
  20. Zari AT, Zari TA, Hakeem KR. Anticancer Properties of Eugenol: A Review. Molecules. 2021;26(23).
  21. Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. Oxid Med Cell Longev. 2021;2021:2497354.
  22. Farrera C, Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur J Pharm Biopharm. 2015;95(Pt A):3-12.
  23. Boraschi D, Canesi L, Drobne D, Kemmerling B, Pinsino A, Prochazkova P. Interaction between nanomaterials and the innate immune system across evolution. Biol Rev. 2023;98(3):747-774.
  24. Tsugita M, Morimoto N, Nakayama M. SiO 2 and TiO 2 nanoparticles synergistically trigger macrophage inflammatory responses. Part Fibre Toxicol. 2017;14:1-9.
  25. Farrera C, Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. European Journal of Pharmaceutics and Biopharmaceutics. 2015;95:3-12.
  26. Ghosh S, Bhattacherjee R, Banerjee D. Nanoparticles and adaptive immunity. Hum Immunol. 2022;25.
  27. Ko C-N, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: Modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology. 2022;20(1):380.
  28. Basante-Romo M, Gutiérrez-M JO, Camargo-Amado R. Non-toxic doses of modified titanium dioxide nanoparticles (m-TiO2NPs) in albino CFW mice. Heliyon. 2021;7(3).
  29. Kazimirova A, Baranokova M, Staruchova M, Drlickova M, Volkovova K, Dusinska M. Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutat Res Genet Toxicol Environ Mutagen. 2019;843:57-65.
  30. Alypoor S, Abdolmaleki A, Mamoudi F, Haghighat K, Soluki M. Evaluation of the Neuroprotective Effect of Eugenol on the Improvement of Sciatic Nerve Injury in Rats. Iran j toxicol. 2023;17(3):53-59.
  31. Zhao Y-x, Wang D, Bais S, Wang H-x. Modulation of pro-inflammatory mediators by Eugenol in AlCl3 induced dementia in rats. 2019.
  32. Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res. 2020;193(1):118-129.
  33. Gilbert JD, Neubauer K, Byard RW. Macroscopic identification of visceral titanium pigment in an intravenous drug user. J Forensic Sci. 2021;66(5):2024-2028.
  34. Ze Y, Sheng L, Zhao X, Hong J, Ze X, Yu X, et al. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PloS One. 2014;9(3):e92230.
  35. Liu D, Zhou JL, Hong F, Zhang YQ. Lung inflammation caused by long‐term exposure to titanium dioxide in mice involving in NF‐κB signaling pathway. J Biomed Mater Res Part A. 2017;105(3):720-727.
  36. Lehotska Mikusova M, Busova M, Tulinska J, Masanova V, Liskova A, Uhnakova I, et al. Titanium Dioxide Nanoparticles Modulate Systemic Immune Response and Increase Levels of Reduced Glutathione in Mice after Seven-Week Inhalation. Nanomaterials (Basel). 2023;13(4).
  37. Hong F, Wang L, Yu X, Zhou Y, Hong J, Sheng L. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice. Nanoscale Res Lett. 2015;10(1):326.
  38. Liu D, Zhou JL, Hong F, Zhang YQ. Lung inflammation caused by long‐term exposure to titanium dioxide in mice involving in NF‐κB signaling pathway. J Biomed Mater Res A. 2017;105(3):720-727.
  39. Jeong J-S, Jegal H, Ko J-W, Kim J-W, Kim J-H, Chung E-H, et al. Titanium Dioxide Nanoparticle Exposure Provokes Greater Lung Inflammation in Females Than Males in the Context of Obesity. Int J Nanomed. 2025:5321-5336.
  40. Lim J-O, Lee S-J, Kim W-I, Pak S-W, Moon C, Shin I-S, et al. Titanium dioxide nanoparticles exacerbate allergic airway inflammation via TXNIP upregulation in a mouse model of asthma. Int J Mol Sci. 2021;22(18):9924.
  41. Barboza JN, da Silva Maia Bezerra Filho C, Silva RO, Medeiros JVR, de Sousa DP. An overview on the anti‐inflammatory potential and antioxidant profile of eugenol. Oxid Med Cell Longev. 2018;2018(1):39-57.
  42. Nisar M, Khadim M, Rafiq M, Chen J, Yang Y, Wan C. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. Oxid Med Cell Longev. 2021: 2497354. 2021.
  43. Kumar A, Siddiqi NJ, Alrashood ST, Khan HA, Dubey A, Sharma B. Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomed Pharm. 2021;139:111588.
  44. Keshari R, Tharmatt A, Pillai MM, Chitkara D, Tayalia P, Banerjee R, et al. Eugenol-Loaded lipid Nanoparticles-Derived hydrogels ameliorate Psoriasis-like skin lesions by Lowering oxidative stress and modulating inflammation. ACS Pharmacol Transl Sci. 2024;7(11):3592-3606.
  45. Leem H-H, Kim E-O, Seo M-J, Choi S-W. Antioxidant and anti-inflammatory activities of eugenol and its derivatives from clove (Eugenia caryophyllata Thunb.). J Korea Soc Food Sci Nutr. 2011;40(10):1361-1370.
  46. Nagababu E, Rifkind JM, Boindala S, Nakka L. Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol Biol. 2010;610:165-180.
  47. Pires Costa E, Maciel dos Santos M, de Paula RA, da Silva DA, Lopes RP, Teixeira RR, et al. Antioxidant and Anti-inflammatory Activity of Eugenol, Bis-eugenol, and Clove Essential Oil: An In Vitro Study. ACS omega. 2025;10(28):31033-31045.
  48. Cui XueYan CX, Yin Jun YJ, Lin Ying LY, Li Na LN, Wang MeiZhen WM, Shen DongSheng SD. Towards a definition of harmless nanoparticles from an environmental and safety perspective. 2016.
  49. Valentini X, Rugira P, Frau A, Tagliatti V, Conotte R, Laurent S, et al. Hepatic and renal toxicity induced by TiO2 nanoparticles in rats: a morphological and metabonomic study. J Toxicol. 2019;2019(1):5767012.
  50. Zaky MY, Morsy HM, Abdel-Moneim A, Zoheir KM, Bragoli A, Abdel-Maksoud MA, et al. Anticancer potential of eugenol in hepatocellular carcinoma through modulation of oxidative stress, inflammation, apoptosis, and proliferation mechanisms. Discov Oncol. 2025;16(1):1080.
  51. Ma L, Liu J, Lin Q, Gu Y, Yu W. Eugenol protects cells against oxidative stress via Nrf2. Exp Ther Med. 2021;21(2):107.
  52. Pramod K, Ansari SH, Ali J. Eugenol: a natural compound with versatile pharmacological actions. Nat Prod Commun. 2010;5(12):1934578X1000501236.
  53. Chowdhury S, Nath D, Chanda Das SR, Kar K, Chakraborty P, Kapoor DU, et al. Nanotechnology based herbal drug delivery system: Current insights and future prospects. Curr Nanomed. 2024.
  54. Mohammadi Nejad S, Özgüneş H, Başaran N. Pharmacological and Toxicological Properties of Eugenol. Turk J Pharm Sci. 2017;14(2):201-206.
  55. Carvalho RPR, Ribeiro FCD, Lima TI, Ervilha LOG, de Oliveira EL, Faustino AO, et al. High doses of eugenol cause structural and functional damage to the rat liver. Life Sci. 2022;304:120696.
  56. Chen J, Dong X, Zhao J, Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol. 2009;29(4):330-337.
  57. Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, et al. Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res. 2009;129(1):170-180.
  58. Yousef HN, Ibraheim SS, Ramadan RA, Aboelwafa HR. The ameliorative role of eugenol against silver nanoparticles‐induced hepatotoxicity in male Wistar rats. Oxid Med Cell Longev. 2022;2022(1):3820848.
  59. Majeed H, Antoniou J, Fang Z. Apoptotic effects of eugenol-loaded nanoemulsions in human colon and liver cancer cell lines. Asian Pac J Cancer Prev. 2014;15(21):9159-9164.
  60. Binu P, Nellikunnath Priya M, Abhilash S, Vineetha RC, Nair H. Protective effects of eugenol against hepatotoxicity induced by arsenic trioxide: An antileukemic drug. Iran J med sci. 2018;43(3):305.
  61. TR DP, Haykal MN. Eugenol nanoparticle encapsulated chitosan enhances cell cycle arrest in hela human cervical cancer cells. Sys Rev Pharm. 2021;12(2).
  62. Cui Y, Liu H, Ze Y, Zengli Z, Hu Y, Cheng Z, et al. Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicol Sci. 2012;128(1):171-185.
  63. Wani MR, Maheshwari N, Shadab G. Eugenol attenuates TiO2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study. nviron Sci Pollut Res Int. 2021;28(18):22664-22678.
  64. Jiang Y, He P, Sheng K, Peng Y, Wu H, Qian S, et al. The protective roles of eugenol on type 1 diabetes mellitus through NRF2-mediated oxidative stress pathway. Elife. 2025;13:RP96600.
  65. Su H, Wang Z, Zhou L, Liu D, Zhang N. Regulation of the Nrf2/HO-1 axis by mesenchymal stem cells-derived extracellular vesicles: implications for disease treatment. Front Cell Dev Biol. 2024;12:1397954.
  66. Yuan L, Wang Y, Li N, Yang X, Sun X, Tian He, et al. Mechanism of action and therapeutic implications of Nrf2/HO-1 in inflammatory bowel disease. Antioxidants. 2024;13(8):1012.
  67. Luo Y, Lu S, Dong X, Xu L, Sun G, Sun X. Dihydromyricetin protects human umbilical vein endothelial cells from injury through ERK and Akt mediated Nrf2/HO-1 signaling pathway. Apoptosis. 2017;22(8):1013-1024.
  68. Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC. Nrf2 and heme oxygenase-1 involvement in atherosclerosis related oxidative stress. Antioxidants. 2021;10(9):1463.