L-Carnosine-coated nanoceria promotes proliferation of human embryonic lung fibroblasts via STAT3/BCL2 axis activation

Document Type : Research Paper

Authors

1 Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia

2 Faculty of Chemistry, Biology and Biotechnology, North Ossetian State University named after Kosta Levanovich Khetagurov, Vladikavkaz, Russia

3 Institute of Longevity with a Clinic of Rehabilitation and Preventive Medicine, Russian Scientific Center of Surgery named after Academician B.V. Petrovsky, Moscow, Russia

10.22038/nmj.2026.90673.2292

Abstract

Background: Nanoceria exhibits unique catalytic activity toward reactive oxygen species (ROS), mimicking the functions of natural enzymes—a property that underlies its biomedical applications, given the essential role of ROS in living organisms. Carnosine is a pH buffer with intrinsic antioxidant properties; it chelates metals and binds carbonyl compounds.
Objective(s): Using human embryonic lung fibroblast model, this study investigates the impacts of carnosine-conjugated nanoscale CeO2 on cell survival, cellular oxidative status, ROS-induced DNA oxidation, dual-strand DNA breaks, activation of DNA repair response, and gene and protein expression of NOX4, NRF2, STAT3, as well as proliferation and autophagy markers.
Results: Carnosine-conjugated nanoceria proved to be non-cytotoxic at millimolar concentrations. Its effects on cytotoxicity, genotoxicity, DNA repair, mitochondrial membrane potential, autophagy, and NOX4 and NRF2 expression were similar to those of bare nanoceria. The principal differences were observed in the expression of STAT3, PCNA, and BCL2 proteins, where carnosine‑coated nanoceria induced a pronounced activating impact after 24 h of exposure, thus promoting proliferation and increasing concentration of the PCNA proliferation marker.
Conclusion: We hypothesize that carnosine‑coated nanoceria directly activates the STAT3/BCL2 axis. These findings may facilitate the development of new molecular models for studying signaling pathways and advance in characterization of the nanoceria’s biochemical roles in regulating ROS‑driven cellular pathways. Moreover, carnosine‑coated nanoceria could be considered a potential agent for enhancing the survival of cell cultures—such as hematopoietic cultures intended for transplantation—through activation of the STAT3/BCL2 axis.

Keywords

Main Subjects


  1. Wong LL, McGinnis JF. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv Exp Med Biol. 2014;801:821-828.
  2. Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release. 2021;338:164-189.
  3. Thakur N, Manna P, Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnology. 2019;17(1):84.
  4. Alvandi M, Shaghaghi Z, Farzipour S, Marzhoseyni Z. Radioprotective Potency of Nanoceria. Curr Radiopharm. 2024;17(2):138-147.
  5. Tang JLY, Moonshi SS, Ta HT. Nanoceria: an innovative strategy for cancer treatment. Cell Mol Life Sci. 2023;80(2):46.
  6. Kargozar S, Baino F, Hoseini SJ, Hamzehlou S, Darroudi M, Verdi J, Hasanzadeh L, Kim HW, Mozafari M. Biomedical applications of nanoceria: new roles for an old player. Nanomedicine (Lond). 2018;13(23):3051-3069.
  7. Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hosseini S, Baino F, Vatanpour M, Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules. 2020;25(19).
  8. Tisi A, Passacantando M, Ciancaglini M, Maccarone R. Nanoceria neuroprotective effects in the light-damaged retina: A focus on retinal function and microglia activation. Exp Eye Res. 2019;188:107797.
  9. Yokel RA, Hussain S, Garantziotis S, Demokritou P, Castranova V, Cassee FR. The Yin: An adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environ Sci Nano. 2014;1(5):406-428.
  10. Budzen S, Rymaszewska J. The biological role of carnosine and its possible applications in medicine. Adv Clin Exp Med. 2013;22(5):739-744.
  11. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803-1845.
  12. Cararo JH, Streck EL, Schuck PF, Ferreira Gda C. Carnosine and Related Peptides: Therapeutic Potential in Age-Related Disorders. Aging Dis. 2015;6(5):369-379.
  13. Ghodsi R, Kheirouri S. Carnosine and advanced glycation end products: a systematic review. Amino Acids. 2018;50(9):1177-1186.
  14. Sale C, Artioli GG, Gualano B, Saunders B, Hobson RM, Harris RC. Carnosine: from exercise performance to health. Amino Acids. 2013;44(6):1477-1491.
  15. Creighton JV, de Souza Goncalves L, Artioli GG, Tan D, Elliott-Sale KJ, Turner MD, Doig CL, Sale C. Physiological Roles of Carnosine in Myocardial Function and Health. Adv Nutr. 2022;13(5):1914-1929.
  16. Feehan J, Hariharan R, Buckenham T, Handley C, Bhatnagar A, Baba SP, de Courten B. Carnosine as a potential therapeutic for the management of peripheral vascular disease. Nutr Metab Cardiovasc Dis. 2022;32(10):2289-2296.
  17. Yang H, Hou X, Xing L, Tian F. Carnosine and bone (Review). Mol Med Rep. 2023;27(1).
  18. Berezhnoy DS, Stvolinsky SL, Lopachev AV, Devyatov AA, Lopacheva OM, Kulikova OI, Abaimov DA, Fedorova TN. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions. Amino Acids. 2019;51(1):139-150.
  19. Babizhayev MA. The detox strategy in smoking comprising nutraceutical formulas of non-hydrolyzed carnosine or carcinine used to protect human health. Hum Exp Toxicol. 2014;33(3):284-316.
  20. Caruso G, Privitera A, Antunes BM, Lazzarino G, Lunte SM, Aldini G, Caraci F. The Therapeutic Potential of Carnosine as an Antidote against Drug-Induced Cardiotoxicity and Neurotoxicity: Focus on Nrf2 Pathway. Molecules. 2022;27(14).
  21. Zhou JY, Lin HL, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. l-Carnosine Protects Against Deoxynivalenol-Induced Oxidative Stress in Intestinal Stem Cells by Regulating the Keap1/Nrf2 Signaling Pathway. Mol Nutr Food Res. 2021;65(17):e2100406.
  22. Prokopieva VD, Yarygina EG, Bokhan NA, Ivanova SA. Use of Carnosine for Oxidative Stress Reduction in Different Pathologies. Oxid Med Cell Longev. 2016;2016:2939087.
  23. Artioli GG, Sale C, Jones RL. Carnosine in health and disease. Eur J Sport Sci. 2019;19(1):30-39.
  24. Hipkiss AR, Baye E, de Courten B. Carnosine and the processes of ageing. Maturitas. 2016;93:28-33.
  25. McFarland GA, Holliday R. Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res. 1994;212(2):167-175.
  26. McFarland GA, Holliday R. Further evidence for the rejuvenating effects of the dipeptide L-carnosine on cultured human diploid fibroblasts. Exp Gerontol. 1999;34(1):35-45.
  27. Shao L, Li QH, Tan Z. L-carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. Biochem Biophys Res Commun. 2004;324(2):931-936.
  28. Ketabi S, Rahmani L. Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: A computer simulation study. Mater Sci Eng C Mater Biol Appl. 2017;73:173-181.
  29. Gholibegloo E, Karbasi A, Pourhajibagher M, Chiniforush N, Ramazani A, Akbari T, Bahador A, Khoobi M. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans. J Photochem Photobiol B. 2018;181:14-22.
  30. Farid RM, Gaafar PME, Hazzah HA, Helmy MW, Abdallah OY. Chemotherapeutic potential of L-carnosine from stimuli-responsive magnetic nanoparticles against breast cancer model. Nanomedicine (Lond). 2020;15(9):891-911.
  31. Lu X, Zhang Y, Wang L, Li G, Gao J, Wang Y. Development of L-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood brain barrier crossing and ischemic stroke treatment. Drug Deliv. 2021;28(1):380-389.
  32. Homaeigohar S, Kordbacheh D, Banerjee S, Gu J, Zhang Y, Huang Z. Zinc Oxide Nanoparticle Loaded L-Carnosine Biofunctionalized Polyacrylonitrile Nanofibrous Wound Dressing for Post-Surgical Treatment of Melanoma. Polymers (Basel). 2025;17(2).
  33. Shcherbakov AB, Teplonogova MA, Ivanova OS, Shekunova TO, Ivonin IV, Baranchikov AY, Ivanov VK. Facile method for fabrication of surfactant-free concentrated CeO2 sols. Materials Research Express. 2017;4(5):055008.
  34. Creed S, McKenzie M. Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Methods Mol Biol. 2019;1928:69-76.
  35. Huang Y-C, Wu S-H, Hsiao C-H, Lee A-T, Huang MH. Mild synthesis of size-tunable CeO2 octahedra for band gap variation. Chemistry of Materials. 2020;32(6):2631-2638.
  36. Prabaharan DMDM, Sadaiyandi K, Mahendran M, Sagadevan S. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles. Materials Research. 2016;19(2):478-482.
  37. Sozarukova M, Proskurnina E, Mikheev I, Polevoy L, Baranchikov A, Ivanov V. Anti-and Pro-Oxidant Properties of Cerium Oxide Nanoparticles Functionalized with Gallic Acid. Russian Journal of Inorganic Chemistry. 2023;68(8):1108-1116.
  38. Durmus Z, Kavas H, Baykal A, Sozeri H, Alpsoy L, Çelik S, Toprak M. Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. Journal of Alloys and Compounds. 2011;509(5):2555-2561.
  39. Torreggiani A, Tamba M, Fini G. Binding of copper (II) to carnosine: Raman and IR spectroscopic study. Biopolymers: Original Research on Biomolecules. 2000;57(3):149-159.
  40. Wagner CC, Baran EJ. Vibrational spectra of polaprezinc, a polymeric Zn (II) complex of carnosine. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 2008;39(4):474-477.
  41. Singh S, Ly A, Das S, Sakthivel TS, Barkam S, Seal S. Cerium oxide nanoparticles at the nano-bio interface: size-dependent cellular uptake. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(sup3):956-963.
  42. Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja V, Thorpe C, Rogers H, Dunn B, Frey AS, Billings MJ, Sholar CA, Hermundstad A, Kumar C, VandeVord PJ, Rzigalinski BA. Cerium Oxide Nanoparticles Improve Outcome after In Vitro and In Vivo Mild Traumatic Brain Injury. J Neurotrauma. 2020;37(12):1452-1462.
  43. Proskurnina EV, Sozarukova MM, Ershova ES, Savinova EA, Kameneva LV, Veiko NN, Teplonogova MA, Saprykin VP, Ivanov VK, Kostyuk SV. Lipid Coating Modulates Effects of Nanoceria on Oxidative Metabolism in Human Embryonic Lung Fibroblasts: A Case of Cardiolipin. Biomolecules. 2025;15:53.
  44. Shi D, Tao J, Man S, Zhang N, Ma L, Guo L, Huang L, Gao W. Structure, function, signaling pathways and clinical therapeutics: The translational potential of STAT3 as a target for cancer therapy. Biochim Biophys Acta Rev Cancer. 2024;1879(6):189207.
  45. Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. Environ Res. 2023;233:116458.
  46. Huynh J, Etemadi N, Hollande F, Ernst M, Buchert M. The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Semin Cancer Biol. 2017;45:13-22.
  47. Kitamura H, Ohno Y, Toyoshima Y, Ohtake J, Homma S, Kawamura H, Takahashi N, Taketomi A. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 2017;108(10):1947-1952.
  48. Panda SP, Kesharwani A, Datta S, Prasanth D, Panda SK, Guru A. JAK2/STAT3 as a new potential target to manage neurodegenerative diseases: An interactive review. Eur J Pharmacol. 2024;970:176490.
  49. Jiang H, Yang J, Li T, Wang X, Fan Z, Ye Q, Du Y. JAK/STAT3 signaling in cardiac fibrosis: a promising therapeutic target. Front Pharmacol. 2024;15:1336102.
  50. Li J, Yin Z, Huang B, Xu K, Su J. Stat3 Signaling Pathway: A Future Therapeutic Target for Bone-Related Diseases. Front Pharmacol. 2022;13:897539.
  51. Shih PC. Revisiting the development of small molecular inhibitors that directly target the signal transducer and activator of transcription 3 (STAT3) domains. Life Sci. 2020;242:117241.
  52. El-Habr EA, Levidou G, Trigka EA, Sakalidou J, Piperi C, Chatziandreou I, Spyropoulou A, Soldatos R, Tomara G, Petraki K, Samaras V, Zisakis A, Varsos V, Vrettakos G, Boviatsis E, Patsouris E, Saetta AA, Korkolopoulou P. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch. 2014;465(4):473-485.
  53. Xu Z, Wu H, Zhang H, Bai J, Zhang Z. Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter </=2.5 mum. J Appl Toxicol. 2020;40(9):1210-1218.
  54. Carballo M, Conde M, El Bekay R, Martin-Nieto J, Camacho MJ, Monteseirin J, Conde J, Bedoya FJ, Sobrino F. Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J Biol Chem. 1999;274(25):17580-17586.
  55. Ng IH, Yeap YY, Ong LS, Jans DA, Bogoyevitch MA. Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation. Biochim Biophys Acta. 2014;1843(3):483-494.
  56. Maryam A, Mehmood T, Zhang H, Li Y, Khan M, Ma T. Alantolactone induces apoptosis, promotes STAT3 glutathionylation and enhances chemosensitivity of A549 lung adenocarcinoma cells to doxorubicin via oxidative stress. Sci Rep. 2017;7(1):6242.
  57. Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int. 2021;21(1):468.
  58. Alas S, Bonavida B. Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin's lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res. 2001;61(13):5137-5144.
  59. Kang J, Chong SJ, Ooi VZ, Vali S, Kumar A, Kapoor S, Abbasi T, Hirpara JL, Loh T, Goh BC, Pervaiz S. Overexpression of Bcl-2 induces STAT-3 activation via an increase in mitochondrial superoxide. Oncotarget. 2015;6(33):34191-34205.
  60. Choi HJ, Han JS. Overexpression of phospholipase D enhances Bcl-2 expression by activating STAT3 through independent activation of ERK and p38MAPK in HeLa cells. Biochim Biophys Acta. 2012;1823(6):1082-1091.
  61. Tan Y, Huang N, Zhang X, Hu J, Cheng S, Pi L, Cheng Y. KIAA0247 suppresses the proliferation, angiogenesis and promote apoptosis of human glioma through inactivation of the AKT and Stat3 signaling pathway. Oncotarget. 2016;7(52):87100-87113.
  62. Lin W, Zheng L, Zhuang Q, Zhao J, Cao Z, Zeng J, Lin S, Xu W, Peng J. Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 2013;13:144.
  63. Agilan B, Rajendra Prasad N, Kanimozhi G, Karthikeyan R, Ganesan M, Mohana S, Velmurugan D, Ananthakrishnan D. Caffeic Acid Inhibits Chronic UVB-Induced Cellular Proliferation Through JAK-STAT3 Signaling in Mouse Skin. Photochem Photobiol. 2016;92(3):467-474.
  64. Bhattacharya S, Ray RM, Johnson LR. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J. 2005;392(Pt 2):335-344.
  65. Choi HJ, Lee JH, Park SY, Cho JH, Han JS. STAT3 is involved in phosphatidic acid-induced Bcl-2 expression in HeLa cells. Exp Mol Med. 2009;41(2):94-101.
  66. Zhao J, Zhang M, Li W, Su X, Zhu L, Hang C. Suppression of JAK2/STAT3 signaling reduces end-to-end arterial anastomosis induced cell proliferation in common carotid arteries of rats. PLoS One. 2013;8(3):e58730.
  67. Wu D, Wang Z. Gastric Cancer Cell-Derived Kynurenines Hyperactive Regulatory T Cells to Promote Chemoresistance via the IL-10/STAT3/BCL2 Signaling Pathway. DNA Cell Biol. 2022;41(4):447-455.
  68. Qin W, Peng C, Yang X, Jiang A, Zhong N, Liu Y, Zhang X, Hirbe AC, Ma M, Yue X. SS18-SSX drives TYK2 expression to activate STAT3/Bcl2 axis, facilitating apoptosis evasion and advancing synovial sarcoma progression. Cell Biol Toxicol. 2024;41(1):8.
  69. Rybakova YS, Kalen AL, Eckers JC, Fedorova TN, Goswami PC, Sarsour EH. [Increased manganese superoxide dismutase and cyclin B1 expression in carnosine-induced inhibition of glioblastoma cell proliferation]. Biomed Khim. 2015;61(4):510-518.
  70. Rybakova YS, Boldyrev AA. Effect of carnosine and related compounds on proliferation of cultured rat pheochromocytoma PC-12 cells. Bull Exp Biol Med. 2012;154(1):136-140.
  71. Iovine B, Iannella ML, Nocella F, Pricolo MR, Bevilacqua MA. Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production. Cancer Lett. 2012;315(2):122-128.
  72. Hsieh SL, Li JH, Dong CD, Chen CW, Wu CC. Carnosine suppresses human colorectal cancer cell proliferation by inducing necroptosis and autophagy and reducing angiogenesis. Oncol Lett. 2022;23(2):44.
  73. Bao Y, Ding S, Cheng J, Liu Y, Wang B, Xu H, Shen Y, Lyu J. Carnosine Inhibits the Proliferation of Human Cervical Gland Carcinoma Cells Through Inhibiting Both Mitochondrial Bioenergetics and Glycolysis Pathways and Retarding Cell Cycle Progression. Integr Cancer Ther. 2018;17(1):80-91.
  74. Wang JP, Yang ZT, Liu C, He YH, Zhao SS. L-carnosine inhibits neuronal cell apoptosis through signal transducer and activator of transcription 3 signaling pathway after acute focal cerebral ischemia. Brain Res. 2013;1507:125-133.
  75. Baykara B, Micili SC, Tugyan K, Tekmen I, Bagriyanik H, Sonmez U, Sonmez A, Oktay G, Yener N, Ozbal S. The protective effects of carnosine in alcohol-induced hepatic injury in rats. Toxicol Ind Health. 2014;30(1):25-32.
  76. Ji YS, Park JW, Heo H, Park JS, Park SW. The neuroprotective effect of carnosine (beta-alanyl-L-histidine) on retinal ganglion cell following ischemia-reperfusion injury. Curr Eye Res. 2014;39(6):634-641.
  77. Dai Z, Lu XY, Zhu WL, Liu XQ, Li BY, Song L, Liu HF, Cai WW, Deng YX, Xu TT, Wang Q, Zhang SJ. Carnosine ameliorates age-related dementia via improving mitochondrial dysfunction in SAMP8 mice. Food Funct. 2020;11(3):2489-2497.
  78. Ma J, Xu X, Wang R, Yan H, Yao H, Zhang H, Jiang S, Xu A. Lipopolysaccharide exposure induces oxidative damage in Caenorhabditis elegans: protective effects of carnosine. BMC Pharmacol Toxicol. 2020;21(1):85.
  79. Cao Y, Xu J, Cui D, Liu L, Zhang S, Shen B, Wu Y, Zhang Q. Protective effect of carnosine on hydrogen peroxide-induced oxidative stress in human kidney tubular epithelial cells. Biochem Biophys Res Commun. 2021;534:576-582.
  80. Wang H, Fang Z, Qiu G, Zhang C, Tang M, Zhou B. Bioprotective and Functional Effect of Carnosine on Sepsis Induced Renal Damage in Male Albino Rat Model through Targeting IL-1beta and TNF-alpha Production. Dokl Biochem Biophys. 2021;500(1):408-414.
  81. Ishii T, Mori-Kobayashi K, Nakamura S, Ohkura S, Matsuyama S. Carnosine supplementation in cryopreservation solution improved frozen-thawed bovine embryo viability. J Reprod Dev. 2024;70(5):279-285.
  82. Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Zhang XD, Thompson JF, Hersey P. Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod Pathol. 2007;20(4):416-426.
  83. Ma J, Song X, Xu X, Mou Y. Cancer-Associated Fibroblasts Promote the Chemo-resistance in Gastric Cancer through Secreting IL-11 Targeting JAK/STAT3/Bcl2 Pathway. Cancer Res Treat. 2019;51(1):194-210.
  84. Oritani K, Tomiyama Y, Kincade PW, Aoyama K, Yokota T, Matsumura I, Kanakura Y, Nakajima K, Hirano T, Matsuzawa Y. Both Stat3-activation and Stat3-independent BCL2 downregulation are important for interleukin-6-induced apoptosis of 1A9-M cells. Blood. 1999;93(4):1346-1354.
  85. Sepulveda P, Encabo A, Carbonell-Uberos F, Minana MD. BCL-2 expression is mainly regulated by JAK/STAT3 pathway in human CD34+ hematopoietic cells. Cell Death Differ. 2007;14(2):378-380.
  86. Lee JK, Won C, Yi EH, Seok SH, Kim MH, Kim SJ, Chung MH, Lee HG, Ikuta K, Ye SK. Signal transducer and activator of transcription 3 (Stat3) contributes to T-cell homeostasis by regulating pro-survival Bcl-2 family genes. Immunology. 2013;140(3):288-300.