Biological Applications of Bacterial Nano-Surface Layers : A Brief Overview

Document Type : Review Paper

Authors

1 Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran

2 Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran

3 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

4 Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran

Abstract

Surface layer as the outer protective coverage of bacteria and archaea are two-dimensional crystalline and symmetrical arrays of proteins that recently attract a lot of attention for biologist scientists. The surface layers of bacteria are usually 5 to 10 nm in diameter and represent highly porous protein lattices with uniform size and morphology with the pore sizes of 2 to 8 nm. The crucial and most prominent property of this protein-based layer is the regular morphology and suitable chemical composition for different biological applications. Although the formation mechanism of surface layers is different from one type of cell to another once, the surface layer protein molecular compositions almost are same for all types. Recently, the biological application of surface layers opens a prominent research fields in surface biological science such as nano-biotechnology adhesion, vaccination, pharmaceutical, biosensors, bioremediation and mineralization application. In this mini review, we discussed about the main application of this nano-layer in biological systems.

Keywords


1. Messner P, Sleytr UB. Crystalline bacterial cell-surface layers. Advances in microbial physiology. 33: Elsevier; 1992. p. 213-75.
2. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. PNAs. 1998; 95(12): 6578-6583.
3. Sleytr UB, Glauert AM. Analysis of regular arrays of subunits on bacterial surfaces; evidence for a dynamic process of assembly. J Ultrastruct Res. 1975; 50(1): 103-116.
4. Albers S-V, Meyer BH. The archaeal cell envelope. Nat Rev Microbiol. 2011; 9(6): 414.
5. Pum D, Tang J, Hinterdorfer P, Herrera JLT, Sleytr UB. S‐Layer Protein Lattices Studied by Scanning Force Microscopy. Nanotechnologies for the Life Sciences. 2010.
6. Egelseer E-M, Sára M, Pum D, Schuster B, Sleytr UB. Genetically engineered S-layer proteins and S-layer-specific heteropolysaccharides as components of a versatile molecular construction kit for applications in nanobiotechnology. NanoBioTechnology: Springer; 2008. p. 55-86.
7. Smit J, Todd WJ. Colloidal gold labels for immunocytochemical analysis of microbes. Ultrastructure techniques for microorganisms: Springer; 1986. p. 469-516.
8. Pavkov-Keller T, Howorka S, Keller W. The structure of bacterial S-layer proteins. Progress in molecular biology and translational science. 103: Elsevier; 2011. p. 73-130.
9. Sleytr UB, Schuster B, Egelseer E-M, Pum D. S-layers: principles and applications. FEMS Microbiol Rev. 2014; 38(5): 823-864.
10. Beveridge TJ. Bacterial S-layers. Curr. Opin. Struct. Biol. 1994;4(2):204-212.
11. Messner P, Schäffer C, Egelseer E-M, Sleytr UB. Occurrence, structure, chemistry, genetics, morphogenesis, and functions of S-layers. Prokaryotic Cell Wall Compounds: Springer; 2010. p. 53-109.
12. Mescher MF, Strominger JL. Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium. J. Biol. Chem. 1976; 251(7): 2005-2014.
13. Breitwieser A, Gruber K, Sleytr U. Evidence for an S-layer protein pool in the peptidoglycan of Bacillus stearothermophilus. J. Bacteriol. 1992; 174(24): 8008-8015.
14. Gruber K, Sleytr UB. Localized insertion of new S-layer during growth of Bacillus stearothermophilus strains. Arch. Microbiol. 1988; 149(6): 485-491.
15. Sára M, Kalsner I, Sleytr UB. Surface properties from the S-layer of Clostridium thermosaccharolyticum D120-70 and Clostridium thermohydrosulfuricum L111-69. Arch. Microbiol. 1988; 149(6): 527-533.
16. Vadillo-Rodríguez V, Busscher HJ, Norde W, De Vries J, Van Der Mei HC. Dynamic cell surface hydrophobicity of Lactobacillus strains with and without surface layer proteins. J. Bacteriol. 2004; 186(19): 6647-6650.
17. Fagan RP, Fairweather NF. Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol. 2014; 12(3): 211.
18. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol. 2003; 94(6): 981-987.
19. Johnson B, Selle K, O’Flaherty S, Goh YJ, Klaenhammer T. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiology. 2013; 159(11): 2269-2282.
20. Ausiello CM, Cerquetti M, Fedele G, Spensieri F, Palazzo R, Nasso M. Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes Infect. 2006; 8(11): 2640-2646.
21. Sleytr UB, Sára M. Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications.Trends Biotechnol . 1997; 15(1): 20-6.
22. Schuster B, Sleytr UB. S-layer-supported lipid membranes.Rev Mol Biotechnol. 2000; 74(3):233-254.
23. Mader C, Küpcü S, Sleytr UB, Sára M. S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2000; 1463(1): 142-150.
24. Scheicher SR, Kainz B, Köstler S, Reitinger N, Steiner N, Ditlbacher H. 2D crystalline protein layers as immobilization matrices for the development of DNA microarrays. Biosens. Bioelectron. 2013; 40(1): 32-37.
25. Šmarda J, Šmajs D, Komrska J, Krzyžánek V. S-layers on cell walls of cyanobacteria. Micron. 2002; 33(3): 257-277.
26. Göbel C, Schuster B, Baurecht D, Sleytr UB, Pum D. S-layer templated bioinspired synthesis of silica. Colloids Surf B Biointerfaces. 2010; 75(2): 565-572.
27. Velásquez L, Dussan J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater. 2009; 167(1-3): 713-716.