Effect of pleurotus sajor-caju polysaccharide encapsulated in poly D, L lactide-co-glycolide nanoparticles for HPV vaccine in murine model

Document Type : Research Paper


1 Department of Clinical Immunology, Faculty of Medical Technology, Western University, Kanchanaburi, Thailand, 71170

2 Head of Clinical Immunology Department, Faculty of Medical Technology, Western University, T.Sralongrua, A.Huay Kra Chao, Kanchanaburi, Thailand, 71170


Objective(s): In the current work, poly D, L lactide-co-glycolide (PLGA) particles were applied for a viral vaccine for the delivery of antigens in cytosolic pathway by increasing the antigen presentation to T-lymphocytes.
HPV-E7 protein with PLGA particles has been reported as a potent adjuvant for HPV vaccine by encapsulating protein into the PLGA particles. Polysaccharide from Pleurotus sajor-caju was also applied as a potent immunomodulator.
Materials and Methods: HPV-E7 protein and Pleurotus sajor-caju polysaccharides (PSC) were encapsulated into PLGA nanoparticles. This combination comprised a strategy to induce helper and cytotoxic T-lymphocytes (CTL) expansion.  Mice antibodies and T-lymphocyte expansion were investigated in comparison between encapsulated E7 protein into PLGA nanoparticles (E7PLGA) and E7 protein with PSC encapsulated into PLGA nanoparticles (PSC-E7PLGA).
Results: The results showed that E7PLGA and PSC-E7PLGA could induce antibody response to HPV. The PSC-E7PLGA could increase the level of viral antigen-specific IgG antibodies. The cellular immune responses are also significantly enhanced by expansion of helper T-lymphocytes and CTL. PSC-E7PLGA was shown to be significantly higher in immunomodulating activity than E7PLGA.
Conclusion: Thus, the encapsulation of polysaccharide and HPV-E7 antigen into PLGA nanoparticles is a strategy for development of HPV vaccine.  


1.Mahdavi A, Monk BJ. Vaccines against human papillomavirus and cervical cancer: promises and challenges. Oncologist. 2005; 10(7): 528-538.
2.Kanodia S, Da Silva DM, Kast WM. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int J Cancer. 2008; 122(2): 247-259.
3.Psyrri A, DiMaio D. Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol. 2008; 5(1): 24-31.
4.Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest. 2004; 113(11): 1515-1525.
5.Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989; 243(4893): 934-937.
6.McKee SJ, Bergot AS, Leggatt GR. Recent progress in vaccination against human papillomavirus-mediated cervical cancer. Rev Med Virol. 2015;25 Suppl 1: 54-71.
7.Sharma C, Khan MA, Mohan T, Shrinet J, Latha N, Singh N. A synthetic chimeric peptide harboring human papillomavirus 16 cytotoxic T lymphocyte epitopes shows therapeutic potential in a murine model of cervical cancer. Immunol Res.2014; 58(1): 132-138.
8.Brinton LA. Epidemiology of cervical cancer--overview. IARC Sci Publ. 1992(119): 3-23.
9.Hanada T, Yoshida H, Kato S, Tanaka K, Masutani K, Tsukada J, Nomura Y, Mimata H, Kubo M, Yoshimura A. Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity. 2003;19(3): 437-450.
10.Guenterberg KD, Lesinski GB, Mundy-Bosse BL, Karpa VI, Jaime-Ramirez AC, Wei L, Carson WE 3rd. Enhanced anti-tumor activity of interferon-alpha in SOCS1-deficient mice is mediated by CD4(+) and CD8(+) T cells. Cancer Immunol Immunother. 2011; 60(9): 1281-12888.
11.Carow B, Ye Xq, Gavier-Widén D, Bhuju S, Oehlmann W, Singh M, Sköld M, Ignatowicz L, Yoshimura A, Wigzell H, Rottenberg ME. Silencing suppressor of cytokine signaling-1 (SOCS1) in macrophages improves Mycobacterium tuberculosis control in an interferon-gamma (IFN-gamma)-dependent manner. J Biol Chem. 2011; 286(30): 26873-26887.
12.Münger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL.Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001; 20(54): 7888-7898.
13.Aline F, Brand D, Pierre J, Roingeard P, Séverine M, Verrier B, Dimier-Poisson I. Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination. Vaccine. 2009; 27(38): 5284-5291.
14.Sinkovics JG, Horvath JC. Viral contaminants of poliomyelitis vaccines. Acta Microbiol Immunol Hung. 2000; 47(4): 471-6.
15.Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol. 2000; 121(2): 216-225.
16.Ma W, Chen M, Kaushal S, McElroy M, Zhang Y, Ozkan C, Bouvet M, Kruse C, Grotjahn D, Ichim T, Minev B. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int J Nanomedicine.2012; 7: 1475-487.
17.Hung CF, Ma B, Monie A, Tsen SW, Wu TC. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther. 2008; 8(4): 421-439.
18.Kim YH, Jung EG, Han KI, Patnaik BB, Kwon HJ, Lee HS, Kim WJ, Han MD. Immunomodulatory Effects of Extracellular beta-Glucan Isolated from the King Oyster Mushroom Pleurotus eryngii (Agaricomycetes) and Its Sulfated Form on Signaling Molecules Involved in Innate Immunity. Int J Med Mushrooms. 2017; 19(6): 521-533.
19.Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev. 2000; 13(4): 523-533.
20.Zheng Y, Zhang Y, Ma Y, Wan J, Shi C, Huang L. Enhancement of immunotherapeutic effects of HPV16E7 on cervical cancer by fusion with CTLA4 extracellular region. J Microbiol. 2008; 46(6): 728-736.
21.Luo L, Qin T, Huang Y, Zheng S, Bo R, Liu Z, Xing J, Hu Y, Liu J1, Wang D. Exploring the immunopotentiation of Chinese yam polysaccharide poly(lactic-co-glycolic acid) nanoparticles in an ovalbumin vaccine formulation in vivo. Drug Deliv. 2017; 24(1): 1099-1111.
22.Le Corre P, Rytting JH, Gajan V, Chevanne F, Le Verge R. In vitro controlled release kinetics of local anaesthetics from poly(D,L-lactide) and poly(lactide-co-glycolide) microspheres. J Microencapsul. 1997; 14(2): 243-255.
23.Katare YK, Panda AK. Immunogenicity and lower dose requirement of polymer entrapped tetanus toxoid co-administered with alum. Vaccine. 2006; 24(17): 3599-3608.
24.Diwan M, Elamanchili P, Cao M, Samuel J. Dose sparing of CpG oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery. Curr Drug Deliv. 2004; 1(4): 405-412.
25.Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, Fahmy TM. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine. 2009; 27(23): 3013-3021.
26.Huang SS, Li IH, Hong PD, Yeh MK. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague. Int J Nanomedicine.2014; 9: 813-822.
27.Zhu H, Chen H, Zeng X, Wang Z, Zhang X, Wu Y, Gao Y, Zhang J, Liu K, Liu R, Cai L, Mei L, Feng SS. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials. 2014; 35(7): 2391-2400.
28.Janeway CA. Progress in immunology. Syndromes of diminished resistance to infection. J Pediatr. 1968; 72(6): 885-903.
29.Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4(+) T cells in immunity to viruses. Nat Rev Immunol. 2012; 12(2): 136-148.
30.Andersen MH, Schrama D, Thor Straten P, Becker JC. Cytotoxic T cells. J Invest Dermatol. 2006; 126(1): 32-41.
31.Castelli C, Rivoltini L, Andreola G, Carrabba M, Renkvist N, Parmiani G. T-cell recognition of melanoma-associated antigens. J Cell Physiol. 2000; 182(3): 323-331.
32.Lam S, Sung J, Cruz C, Castillo-Caro P, Ngo M, Garrido C, Kuruc J, Archin N, Rooney C, Margolis D, Bollard C. Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy. Mol Ther. 2015; 23(2): 387-395.
33.Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, von Andrian U, Farokhzad OC. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond). 2010; 5(2): 269-285.
34.Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002; 20: 621-667.
35.Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 201; 12(8): 557-569.
36.Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005; 23: 975-1028.
37.De Souza Reboucas J, Esparza I, Ferrer M, Sanz ML, Irache JM, Gamazo C. Nanoparticulate adjuvants and delivery systems for allergen immunotherapy. J Biomed Biotechnol.2012: 474605.