1.Cháfer-Pericás C, A Maquieira, R Puchades. Fast screening methods to detect antibiotic residues in food samples. TRAC-TREND ANAL CHEM. 2010; 29(9): 1038-1049.
2.Xu Y, C Lu, Y Sun, Y Shao, Y Cai, Y Zhang, J Miao, P Miao. A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles. Mikrochim Acta. 2018; 185(12): 548.
3.Han Q, Wang R, Xing B, Chi H, Wu D, Wei Q. Label-free photoelectrochemical aptasensor for tetracycline detection based on cerium doped CdS sensitized BiYWO6. Biosens Bioelectron. 2018; 106: 7-13.
4.Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, J J Alvarez P. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol. 2010; 44(19): 7220-7225.
5.Keeney KM, Yurist-Doutsch S, Arrieta MC, Finlay BB. Effects of antibiotics on human microbiota and subsequent disease. Annu Rev Microbiol. 2014; 68: 217-235.
6.Wang C, Liu J, Han X, Liu C, Tian Y, Zhou N. UV-visible spectroscopic detection of kanamycin based on target-induced growth of gold nanoparticles. Anal Methods. 2017; 9(33): 4843-4850.
7. Song Y, Duan F, Zhang S, Tian JY, Zhang Z, Wang ZW, Liu CS, Xu WM, Du M. Iron oxide@ mesoporous carbon architectures derived from an Fe (II)-based metal organic framework for highly sensitive oxytetracycline determination.
J Mater Chem. A. 2017; 5(36): 19378-19389.
8.Knecht BG, Strasser A, Dietrich R, Märtlbauer E, Niessner R, Weller MG. Automated microarray system for the simultaneous detection of antibiotics in milk. Anal Chem. 2004; 76(3): 646-654.
9.Luo Z, Wang Y, Lu X, Chen J, Wei F, Huang Z, Zhou C, Y Duan. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal Chim Acta. 2017; 984: 177-184.
10. Kim CH, Lee LP, Min JR, Lim MW, Jeong SH. An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk. Biosens Bioelectron. 2014; 51: 426-430.
11. Meng F, Ma X, Duan N, Wu S, Xia Y, Wang Z, Xu B. Ultrasensitive sers aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly. Talanta. 2017; 165: 412-418.
12. Liu S, Wang Y, Xu W, Leng X, Wang H, Guo Y, Huang J. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens Bioelectron. 2017; 88: 181-187.
13.Wu Y, Midinov B, White RJ. An Electrochemical Aptamer-Based Sensor for Real-Time Monitoring of Insulin. ACS sens. 2019.
14.Wen S, Miao X, Fan GC, Xu T, Jiang LP, Wu P, Cai C, Zhu JJ. Aptamer-Conjugated Au Nanocage/SiO2 Core-Shell Bifunctional Nanoprobes with High Stability and Biocompatibility for Cellular SERS Imaging and Near-Infrared Photothermal Therapy. ACS Sens. 2019.
15.Chen J, , Li Y, Huang Y, Zhang H, Chen X, Qiu H.. Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS2 quantum dots and MoS2 nanosheets. Mikrochim Acta. 2019; 186(2): 58.
16.Zhou N, Su F, Li Z, Yan X, Zhang C, Hu B, He L, Wang M, Zhang Z. Gold nanoparticles conjugated to bimetallic manganese(II) and iron(II) Prussian Blue analogues for aptamer-based impedimetric determination of the human epidermal growth factor receptor-2 and living MCF-7 cells. Mikrochim Acta. 2019; 186(2): 75.
17.Zhu L, Li S, Shao X, Feng Y, Xie P, Luo Y, Huang K, Xu W. Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Mikrochim Acta. 2019; 186(2): 111.
18.Chen L, He W, Jiang H, Wu L, Xiong W, Li B, Zhou Z, Qian Y. In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. Int J Nanomedicine. 2019; 14: 149-159.
19.Nie Y, Yang M, Ding Y. Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Mikrochim Acta. 2018; 185(7): 331.
20.Han Z, Luo M, Weng Q, Chen L, Chen J, Li C, Zhou Y, Wang L. ZnO flower-rod/g-C3N4-gold nanoparticle-based photoelectrochemical aptasensor for detection of carcinoembryonic antigen. Anal Bioanal Chem. 2018; 410(25): 6529-6538.
21.Kim YS, Kim JH, Kim IA, Lee SJ, Jurng J, Gu MB. A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron. 2010; 26(4): 1644-1649.
22.Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc. 1998; 120(9): 1959-1964.
23.Sun J, Guo A, Zhang Z, Guo L, Xie J. A conjugated aptamer-gold nanoparticle fluorescent probe for highly sensitive detection of rHuEPO-α. Sensors. 2011; 11(11): 10490-10501.
24.Gopinath SC, Lakshmipriya T, Awazu K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron. 2014; 51: 115-123.
25.Smith J E, Griffin DK, Leny JK, Hagen JA, Chávez JL, Kelley-Loughnane N. Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field. Talanta. 2014; 121: 247-255.
26.Wen S, Zheng F, Shen M, Shi X. Synthesis of polyethyleneimine-stabilized gold nanoparticles for colorimetric sensing of heparin. Colloids Surf A Physicochem Eng Asp. 2013; 419: 80-86.
27.Liu J, Guan Z, Lv Z, Jiang X, Yang S, Chen A. Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Biosens Bioelectron. 2014; 52: 265-270.
28.Zhou N, Ma Y, Hu B, He L, Wang S, Zhang Z, Lu S. Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens Bioelectron. 2019; 127: 92-100.