1.Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF. Iron oxide as an MRI contrast agent for cell tracking: Supplementary Issue. Magn. Reson. Insights. 2015; 8: S23557.
2.Kostiv U, Patsula V, Šlouf M, Pongrac IM, Škokić S, Radmilović MD, Pavičić I, Vrček IV, Gajović S, Horák D. Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4 & SiO2 core–shell nanoparticles. RSC Adv. 2017; 7(15): 8786-8797.
3.Shen L, Li B, Qiao Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Mater. 2018; 11(2): 324-352.
4.Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014; 1-12.
5.Zheng YH, Cheng Y, Bao F, Wang YS. Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater Res bull. 2006; 41(3): 525-529.
6.Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010; 22(25): 2729-2742.
7.Xia M, Chen C, Long M, Chen C, Cai W, Zhou B. Magnetically separable mesoporous silica nanocomposite and its application in Fenton catalysis. Microporous Mesoporous Mater. 2011; 145(1-3): 217-223.
8.Deng YH, Wang CC, Hu JH, Yang WL, Fu SK. Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A. 2005; 262(1-3): 87-93.
9.Qu L, Tie S. Mesoporous silica-coated superparamagnetic magnetite functionalized with CuO and its application as a desulfurizer. Microporous Mesoporous Mater. 2009; 117 (1-2): 402-405.
10.Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem. 2004; 76(5): 1316-1321.
11.Bumb A, Brechbiel MW, Choyke PL, Fugger L, Eggeman A, Prabhakaran D, Hutchinson J, Dobson PJ. Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnol. 2008; 19(33): 335601.
12.Knežević NŽ, Ruiz-Hernández E, Hennink WE, Vallet-Regí M. Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv. 2013; 3(25): 9584-9593.
13.Niu D, Ma Z, Li Y, Shi J. Synthesis of core− shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J Am Chem Soc. 2010; 132(43): 15144-15147.
14.Castillo SI, Ouhajji S, Fokker S, Erné BH, Schneijdenberg CT, Thies-Weesie DM, Philipse AP. Silica cubes with tunable coating thickness and porosity: From hematite filled silica boxes to hollow silica bubbles. Microporous Mesoporous Mater. 2014; 195: 75-86.
15.Yang Y, Liu J, Bai S, Li X, Yang Q. Engineering the mesopores of Fe3O4@ mesosilica core–shell nanospheres through a Solvothermal post‐treatment method. Chem Asian J. 2013; 8(3): 582-587.
16.Huang S, Li C, Cheng Z, Fan Y, Yang P, Zhang C, Yang K, Lin J. Magnetic Fe3O4@ mesoporous silica composites for drug delivery and bioadsorption. J Colloid Interface Sci. 2012; 376(1): 312-321.
17.He Q, Cui X, Cui F, Guo L, Shi J. Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition. Microporous Mesoporous Mater. 2009; 117(3): 609-616.
18.Lu X, Liu Q, Wang L, Jiang W, Zhang W, Song X. Multifunctional triple-porous Fe3O4@ SiO2 superparamagnetic microspheres for potential hyperthermia and controlled drug release. RSC Adv. 2017; 7(51): 32049-57.
19.Singh LP, Bhattacharyya SK, Mishra G, Ahalawat S. Functional role of cationic surfactant to control the nano size of silica powder. Appl Nanosci. 2011; 1(3): 117-122.
20.Singh P, Nandanwar R, Haque FZ. Effect of surfactants on synthesis of SiO2 nanopowder using sol-gel. Int. J. Adv. Electron. Comput. Eng. 2013; 2(7): 221-226.
21.Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Academic press; 2013.
22.Faaliyan K, Abdoos H, Borhani E, Seyyed Afghahi SS, Magnetite-silica nanoparticles with core-shell structure: single-step synthesis, characterization and magnetic behavior. J. Sol-Gel Sci. Technol.; 2018, 88(3): 609-617.
23.Dewanto AS, Kusumawati DH, Putri NP, Yulianingsih A, Sa’adah IK, Taufiq A, Hidayat N, Sunaryono S, Supardi ZA. Structure analysis of Fe3O4@SiO2 core shells prepared from amorphous and crystalline SiO2 particles. InIOP Conf. Ser.: Mater. Sci. Eng. 2018 May (Vol. 367, No. 1, p. 012010). IOP Publishing.
24.Zandipak R, Sobhanardakani S. Novel mesoporous Fe3O4/SiO2/CTAB–SiO2 as an effective adsorbent for the removal of amoxicillin and tetracycline from water. Clean Technol. Environ Policy. 2018; 1-5.
25.Duncan R, Vicent MJ, Greco F, Nicholson RI. Polymer–drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr.-Relat. Cancer. 2005; 12 (Supplement 1): S189-S199.
26.Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Boehm IB, Heverhagen JT, Prosperi D, Parak WJ. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012; 41(11): 4306-4334.
27.Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR. Tuning the magnetic properties of nanoparticles. Int J Mol Sci. 2013; 14(8): 15977-6009.
28.Wang J, Sun J, Sun Q, Chen Q. One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull. 2003; 38(7): 1113-1118.
29.Myers D. Surfactant science and technology. John Wiley & Sons; 2005: 11.
30.Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Delivery Rev. 2008; 60(11): 1278-1288.