1. González-Díaz C, Uscanga-Carmona MC, Ibarra-Martínez CD, Jiménez-Fernández ME, Lozano Trenado LM, Silva-Escobedo JG, Polo-Soto SM. Differentiation BIRADS I vs II by Magnetic Induction Spectroscopy: A Potential Innovative Method to Detect Neoplasies in Breast. Revista Mexicana de Ingeniería Biomédica. 2012; 33(2): 65-76.
2.Mannello F. Understanding breast cancer stem cell heterogeneity: time to move on to a new research paradigm. BMC Medicine. 2013; 11(1): 169.
3.Velasco-Velázquez M A, Homsi Nora, De La Fuente Marisol, Pestell Richard G. Breast cancer stem cells. Int J Biochem Cell Biol. 2012; 44(4): 573-577.
4.Al-Hajj Muhammad, Wicha Max S, Benito-Hernandez Adalberto, Morrison Sean J, Clarke Michael F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. U.S.A. 2003; 100(7): 3983-3988.
5.Jordan A, Wust P, Scholz R, Tesche B, Fähling H, Mitrovics T, Vogl T, Cervos-Navarro J, Felix R. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int J Hyperth. 1996; 12(6): 705-722.
6.Nielsen OS, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment?. Eur J Cancer. 2001; 37(13): 1587-1589.
7.Sneed PK, Stauffer PR, McDermott MW, Diederich CJ, Lamborn KR, Prados MD, Chang S, Weaver KA, Spry L, Malec MK, Lamb SA, Voss B, Davis RL, Wara WM, Larson DA, Phillips TL, Gutin PH. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int J Radiat Oncol. 1998; 40(2): 287-295.
8.Lee TW, Murad Greg JA, Hoh BL, Rahman M. Fighting Fire with Fire: The Revival of Thermotherapy for Gliomas. Anticancer Res. 2014; 34(2): 565-574.
9.Carpentier A, McNichols RJ, Stafford RJ, Guichard J-P, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B. Laser thermal therapy: Real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med. 2011; 43(10): 943-950.
10.Sneed, P.K., Hyperthermia. Textbook of Radiat Oncol. 2004; :1569-1596.
11.Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002; 3(8): 487-497.
12.Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperth. 2001; 17(1): 1-18.
13.Horsman M, Overgaard J. Hot Topic: Can mild hyperthermia improve tumour oxygenation?. Int J Hyperth. 1997; 13(2): 141-147.
14.Henrich F, Rahn H, Odenbach S. Heat transition during magnetic heating treatment: Study with tissue models and simulation. J Magn Magn Mater. 2015; 380: 353-359.
15.Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surg. 1957; 146(4): 596-606.
16.Stang J, Haynes M, Carson P, Moghaddam M. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans Biomed Eng. 2012; 59(9): 2431-2438.
17.Lazebnik M, Madsen EL, Frank GR, Hagness SC. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys Med Biol. 2005; 50(18): 4245-4258.
18.Mukherjee S, Udpa L, Udpa S, Rothwell EJ, Deng Y. Microwave Time-Reversal Mirror for Imaging and Hyperthermia Treatment of Breast Tumors. Prog Electromagn Res. 2019; 77: 1-16.
19.Yuan Y, Wyatt C, Maccarini P, Stauffer P, Craciunescu O, MacFall J, Dewhirst M, Das SK. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification. Phys Med Biol. 2012; 57(7): 2021.
20.Miaskowski A, Sawicki B. Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model. IEEE Trans Biomed Eng. 2013; 60(7): 1806-1813.
21.Tayel M, Abouelnaga T, Elnagar A. Pencil Beam Grid Antenna Array for Hyperthermia Breast Cancer Treatment System. Circ Syst. 2017; 8(05): 122.
22.Nguyen PT, Abbosh AM, Crozier S. Thermo-Dielectric Breast Phantom for Experimental Studies of Microwave Hyperthermia. IEEE Antennas Wirel Propag Lett. 2016; 15: 476-479.
23.Hergt R, Dutz S, Müller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter. 2006; 18(38): 2919.
24.Jeun M. Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Appl Phys Lett. 2012; 100(9): 092406.
25.Heydari M, Javidi M, Attar MM, Karimi A, Navidbakhsh M, Haghpanahi M, Amanpour S. Magnetic fluid hyperthermia in a cylindrical gel contains water flow. J Mech Med Biol. 2015; 15(05): 1550088.
26.Henrich F, Rahn H, Odenbach S. Investigation of heat distribution during magnetic heating treatment using a polyurethane–ferrofluid phantom-model. J Magn Magn Mater. 2014; 351: 1-7.
27.Ma M, Zhang Y, Shen X, Xie J, Li Y, Gu N. Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields. Nano Res. 2015; 8(2): 600-610.
28.Kappiyoor R, Liangruksa M, Ganguly R, Puri IK. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia. J Appl Phys. 2010; 108(9): 094702.
29.Joines WT, Zhang Y, Li C, Jirtle RL. The measured electrical properties of normal and malignant human tissues from 50 to 900. Med Phys. 1994; 21(4): 547-550.
30.Kavousi M, Saadatmand E, Riahi Alam N. Physical Parameters Measurement of Breast Equivalent Phantom for Clinical Studies in Radiofrequency Hyperthermia. Frontiers Biomed Technol. 6(1):28-34.
31.Dabbagh A, Abdullah AJJ, Ramasindarum C, Abu Kasim NH. Tissue-Mimicking Gel Phantoms for Thermal Therapy Studies. Ultrason Imaging. 2014; 36(4): 291-316.
32.Zhou T, Meaney PM, Fanning MW, Geimer ShD, Paulsen KD. Integrated microwave thermal imaging system with mechanically steerable HIFU therapy device. Spie Bios. 2009; 7181.
33.Wei Y, Han B, Hu X, Lin Y, Wang X, Deng X. Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia. 2012; 27: 632-7.