The antibacterial activity of an epoxy resin-based dental sealer containing bioactive glass, hydroxyapatite, and fluorohydroxyapatite nanoparticles against Enterococcus Faecalis and Streptococcus mitis

Document Type : Research Paper

Authors

1 Department of Dental Biomaterials, School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Endodontic, Dental School of the University of Basra, Basra, Iraq

3 Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran

5 Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran

6 Dental Implant Research Center, Dentistry Research Institute, Tehran

7 Department of Microbiology, School of Medicine, Tehran

Abstract

Objective(s): The present study aimed to investigate the antibacterial properties of a conventional epoxy-based dental sealer modified with synthesized bioactive glass (BG), hydroxyapatite (HA), and fluorine-substituted hydroxyapatite (FHA) nano-fillers.
Materials and Methods: The synthesized nano-fillers were incorporated into the conventional epoxy-based dental seaer at the concentration of 10%. The antimicrobial properties of the unmodified sealers (controls) and modified seaers with BG, HA, and FHA nanoparticles (NPs) were evaluated based on biofilm formation and using the direct contact test (DCT) of Enterococcus faecalis and Streptococcus mitis. Data analysis was performed using one-way analysis of variance (ANOVA) and Tukey’s post-hoc test at the significance level of 5%.
Results: A significant reduction was observed in the biofilm formation and DCT of the microbial strains in the three modified groups compared to the unmodified conventional epoxy sealer (P<0.05). The addition of FHA NPs resulted in the most significant antibacterial effects against E. faecalis and S. mitis, as well as a statistically significant reduction compared to the unmodified and BG-modified groups (P≤0.001).
Conclusion: According to the results of this preliminary study, nano-structured FHA, HA, and BG fillers incorporated into epoxy-based dental sealers could be potentially effective biomaterials for antibacterial approaches to root canal treatments.

Keywords


1.Lin LM, Skribner JE, Gaengler P. Factors associated with endodontic treatment failures. J Endod. 1992; 18(12): 625-627.
2.Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod. 2009; 35: 1051-1055.
3.Sundqvist G. Associations between microbial species in dental root canal infections. Oral Microbiol Immunol. 1992; 7(5): 257-262.
4.George M, Ivancakova R. Root canal microflora. Acta Medica (Hradec Kralove). 2007; 50(1): 7-15.
5.AlShwaimi E, Bogari D, Ajaj R, Al-Shahrani S, Almas K, Majeed A. In vitro antimicrobial effectiveness of root canal sealers against enterococcus faecalis: A Systematic Review. J Endod. 2016; 42(11): 1588-1597.
6.Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod. 2006; 32(2): 93-98.
7.Gjorgievska E, Apostolska S, Dimkov A, Nicholson JW, Kaftandzieva A. Incorporation of antimicrobial agents can be used to enhance the antibacterial effect of endodontic sealers. Dent Mate. 2013; 29(3): e29-e34.
8.Junior NBD, Collares FM, Genari B, de Souza Balbinot G, Samuel SMW, Arthur RA, Visioli F Guterres SS, Leitune VCB . Influence of the addition of microsphere load amoxicillin in the physical, chemical and biological properties of an experimental endodontic sealer. J Dent. 2018; 68: 28-33.
9.Kangarlou A, Neshandar R, Matini N, Dianat O. Antibacterial efficacy of AH Plus and AH26 sealers mixed with amoxicillin, triple antibiotic paste and nanosilver. J Dent Res Dent Clin Dent Prospects. 2016; 10(4): 220-225.
10.Baer J, Maki JS. In vitro evaluation of the antimicrobial effect of three endodontic sealers mixed with amoxicillin. J Endod. 2010; 36 (7): 1170-1173.
11.Collares FM, Leitune VCB, Portella FF, Santos PD, Balbinot GdS, Dos Santos LA, Parolo CCF, Samuel SMW. Methacrylate‐based root canal sealer containing chlorexidine and α‐tricalcium phosphate. J BIOMED MATER RES B. 2018; 106(4): 1439-1443.
12.Barros J, Silva M, Rodrigues M, Alves F, Lopes M, Pina‐Vaz I, Siqueira JF Jr. Antibacterial, physicochemical and mechanical properties of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. Int Endod J. 2014; 47(8): 725-734.
13.Samiei M, Farjami A, Dizaj SM, Lotfipour F. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies. Mater Sci Eng. C. 2016; 58: 1269-1278.
14.Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod. 2016; 42(10): 1417-1426.
15.Tarle Z. Bioaktivni dentalni kompozitni materijali. Rad Hrvatske akademije znanosti i umjetnosti: Medicinske znanosti. 2018; 533= 45: 83-99.
16.Kishen A. NANOTECHNOLOGY IN ENDODONTICS: Springer; 2016.
17.S. V. Dorozhkin ME. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002; 17(41): 3130-3146.
18.Meskinfam M SM, Jazdarreh H, Zare K. Biocompatibility evaluation of nano hydroxyapatite-starch biocomposites. J Biomed Nanotechnol. 2011; 7(3): 455-459.
19.MM T-o, Gopalakrishnan V, Samsuddin A, Al Salihi K, Shamsuria O. Antibacterial property of locally produced hydroxyapatite. Archives of Orofacial Sciences. 2007;2(1): 41-44.
20.Makvandi P, Esposito Corcione C, Paladini F, Gallo AL, Montagna F, Jamaledin R, Pollini M, Maffezzoli A. Antimicrobial modified hydroxyapatite composite dental bite by stereolithography. Polym Adv Technol. 2018; 29(1): 364-71.
21.Wei M EJ, Bostrom T, Grøndahl L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003; 14(4): 311-320.
22.T A. The effect of fluoride on apatite structure and growth. Crit Rev Oral Biol Med. 1997; 8(2): 136-153.
23.Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007; 23(3): 343-362.
24.Alhilou A, Do T, Mizban L, Clarkson BH, Wood DJ, Katsikogianni MG. Physicochemical and antibacterial characterization of a novel fluorapatite coating. ACS omega. 2016; 1(2): 264-276.
25.Hamilton I. Biochemical effects of fluoride on oral bacteria. J Dent Res. 1990; 69(2_suppl): 660-667.
26.Shafiei F, Behroozibakhsh M, Moztarzadeh F, Haghbin-Nazarpak M, Tahriri M. Nanocrystalline fluorine-substituted hydroxyapatite [Ca5 (PO4) 3 (OH) 1− xFx (0≤ x≤ 1)] for biomedical applications: preparation and characterisation. Micro Nano Lett. 2012; 7(2): 109-114.
27.Miles AA, Misra S, Irwin J. The estimation of the bactericidal power of the blood. Epidemiol Infect. 1938; 38(6): 732-749.
28.Gilbert GH, Tilashalski KR, Litaker MS, McNeal SF, Boykin MJ, Kessler AW, DPBRN Collaborative Group. Outcomes of root canal treatment in Dental PBRN practices research network practices. Gen Dent. 2010; 58(1): 28-36.
29.Ng YL, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature–part 1. Effects of study characteristics on probability of success. Int Endod J. 2007; 40(12): 921-939.
30.Al-Shwaimi E. Evaluation Of Antimicrobial Effect Of Root Canal Sealers. Pakistan Oral & Dental Journal. 2011; 31(2).
31.Anumula L, Kumar S, Kumar VS, Sekhar C, Krishna M, Pathapati RM, Venkata Sarath P, Vadaganadam Y, Manne RK, Mudlapudi S . An assessment of antibacterial activity of four endodontic sealers on Enterococcus faecalis by a direct contact test: an in vitro study. ISRN dentistry. 2012; 2012: 989781.
32.Wang L, Xie X, Li C, Liu H, Zhang K, Zhou Y, Chang X, Xu HHK . Novel bioactive root canal sealer to inhibit endodontic multispecies biofilms with remineralizing calcium phosphate ions. J Dent. 2017; 60: 25-35.
33.Editorial Board of the Journal of Endodontics. Wanted: a base of evidence. J Endod. 2007; 33(12): 1401-1402.
34.Hu S, Chang J, Liu M, Ning C. Study on antibacterial effect of 45S5 Bioglass®. J Mater Sci: Mater Med. 2009; 20(1): 281-286.
35.Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E . Bactericidal effects of bioactive glasses on clinically important aerobic bacteria.J Mater Sci.: Mater Med. 2008;19(1): 27-32.
36.Korkut E, Torlak E, Altunsoy M. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass. J Appl Biomater Funct Mater. 2016; 14(3): e296-e301.
37.Ragab H, Ibrahim F, Abdallah F, Al-Ghamdi AA, El-Tantawy F, Radwan N, Yakuphanoglu F. Synthesis and in vitro antibacterial properties of hydroxyapatite nanoparticles. IOSR J Pharm Biol Sci. 2014;9(1): 77-85.
38.Chaughule RS. Dental Applications of Nanotechnology: Springer; 2018.
39.Song W, Ge S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules. 2019; 24(6):1033.
40.Sobierajska P, Dorotkiewicz-Jach A, Zawisza K, Okal J, Olszak T, Drulis-Kawa Z, Wiglusza RJ. Preparation and antimicrobial activity of the porous hydroxyapatite nanoceramics. J Alloys Compd. 2018; 748: 179-187.
41.Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017; 12: 1227-1249.
42.Wang L, He S, Wu X, Liang S, Mu Z, Wei J, Deng F, Deng Y, Wei S.Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014; 35(25): 6758-6775.