Bimodal magnetic resonance imaging-computed tomography nanoprobes: A Review

Document Type : Review Paper


1 Medical Radiation Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran

2 Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

3 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

4 Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, C.P. 51664, Tabriz, Iran

5 Department of Radiology, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran


Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic systems for the design of multifunctional agents. Magnetic resonance imaging (MRI) and computed tomography (CT) are frequently used as noninvasive imaging modalities. These powerful, noninvasive diagnostic techniques used for the imaging of soft and hard tissues, respectively. However, MRI has low sensitivity and is not suitable for the imaging of bony structures. On the other hand, low soft tissue contrast is a major limitation of CT. Therefore, the development of various contrast agents that are proper for bimodal MRI/CT nanoprobes could largely influence modern medicine. This review aimed to specifically focus on the imaging properties of bimodal MRI/CT nanoprobes and their biomedical applications.


1. Miao X, Xu W, Cha H, Chang Y, Oh IT, Chae KS, Lee GH. Application of Dye‐coated ultrasmall gadolinium oxide nanoparticles for biomedical dual imaging. Bull Korean Chem Soc. 2017; 38(9): 1058-1068.
2. Wei Z, Wu M, Li Z, Lin Z, Zeng J, Sun H, Liu X, Liu J, Li B, Zeng Y. Gadolinium-doped hollow CeO2-ZrO2 nanoplatform as multifunctional MRI/CT dual-modal imaging agent and drug delivery vehicle. Drug Deliv. 2018; 25(1): 353-363.
3. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011; 399(1): 3-27.
4. Li X, Zhang X-N, Li X-D, Chang J. Multimodality imaging in nanomedicine and nanotheranostics. Cancer biol med. 2016; 13(3): 339-348.
5. Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyás B. Nanoparticles in practice for molecular-imaging applications: An overview. Acta biomater. 2016; 41:1-16.
6. Xia Y, Matham MV, Su H, Padmanabhan P, Gulyás B. Nanoparticulate contrast agents for multimodality molecular imaging. J Biomed Nanotechnol. 2016; 12(8):1553-1584.
7. Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials. 2012; 33(4): 1079-1089.
8. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011; 32(17): 4151-4160.
9. Martí-Bonmatí L, Sopena R, Bartumeus P, Sopena P. Multimodality imaging techniques. Contrast Media Mol Imaging. 2010; 5(4): 180-189.
10. Cheheltani R, Ezzibdeh RM, Chhour P, Pulaparthi K, Kim J, Jurcova M, Hsu JC, Blundell C, Litt HI, Ferrari VA. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials. 2016; 102: 87-97.
11. Nahas A, Varna M, Fort E, Boccara AC. Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection. Biomed Opt Express. 2014; 5(10): 3541-3546.
12. Amendola V, Scaramuzza S, Litti L, Meneghetti M, Zuccolotto G, Rosato A, Nicolato E, Marzola P, Fracasso G, Anselmi C. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small. 2014; 10(12): 2476-2486.
13. Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem. 2009; 20(2): 397-401.
14. Jin Y, Wang J, Ke H, Wang S, Dai Z. Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials. 2013; 34(20): 4794-4802.
15. An L, Hu H, Du J, Wei J, Wang L, Yang H, Wu D, Shi H, Li F, Yang S. Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging. Biomaterials. 2014; 35(20): 5381-5392.
16. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles. J Nucl Med. 2008; 49(8): 1371-1379.
17. Torres Martin de Rosales R, Tavaré R, Glaria A, Varma G, Protti A, Blower PJ. 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem. 2011; 22(3): 455-465.
18. Eghbali P, Fattahi H, Laurent S, Muller RN, Oskoei YM. Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging. J Iran Chem Soc. 2016; 13(1): 87-93.
19. Sun M, Sundaresan G, Jose P, Yang L, Hoffman D, Lamichhane N, Zweit J. Highly stable intrinsically radiolabeled indium-111 quantum dots with multidentate zwitterionic surface coating: dual modality tool for biological imaging. J Mater Chem B. 2014; 2(28): 4456-4466.
20. Zheng X-Y, Sun L-D, Zheng T, Dong H, Li Y, Wang Y-F, Yan C-H. PAA-capped GdF3 nanoplates as dual-mode MRI and CT contrast agents. Sci Bull. 2015; 60(12): 1092-1100.
21. Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, Shi X. 99mTc-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfaces. 2016; 8(31): 19883-19891.
22. Zhang C, Zhou Z, Qian Q, Gao G, Li C, Feng L, Wang Q, Cui D. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013; 1(38): 5045-5053.
23. Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine. 2014; 9: 711-726.
24. Accardo A, Tesauro D, Aloj L, Pedone C, Morelli G. Supramolecular aggregates containing lipophilic Gd (III) complexes as contrast agents in MRI. Coord Chem Rev. 2009; 253(17-18): 2193-2213.
25. Boss A, Weiger M, Wiesinger F, editors. Future image acquisition trends for PET/MRI. Semin nucl med. 2015; 45(3): 201-211.
26. Wiesinger F, Sacolick LI, Menini A, Kaushik SS, Ahn S, Veit‐Haibach P, Delso G, Shanbhag DD. Zero TE MR bone imaging in the head. Magn Reson Med. 2016; 75(1): 107-114.
27. Du F, Lou J, Jiang R, Fang Z, Zhao X, Niu Y, Zou S, Zhang M, Gong A, Wu C. Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int J Nanomedicine. 2017; 12: 5973-5992.
28. Dekrafft KE, Xie Z, Cao G, Tran S, Ma L, Zhou OZ, Lin W. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography. Angew Chem. 2009; 121(52): 10085-10088.
29. Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology. 2011; 22(15): 155101.
30. Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013; 25(19):2641-2660.
31. Liu Y, Ai K, Lu L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res. 2012; 45(10): 1817-1827.
32. Dadashi S, Poursalehi R, Delavari H. Optical and structural properties of oxidation resistant colloidal bismuth/gold nanocomposite: an efficient nanoparticles based contrast agent for X-ray computed tomography. J Mol Liq. 2018; 254: 12-19.
33. Hernández-Rivera M, Kumar I, Cho SY, Cheong BY, Pulikkathara MX, Moghaddam SE, Whitmire KH, Wilson LJ. High-performance hybrid bismuth–carbon nanotube based contrast agent for X-ray CT imaging. ACS Appl Mater Interfaces. 2017; 9(7): 5709-5716.
34. Chen J, Yang X-Q, Meng Y-Z, Huang H-H, Qin M-Y, Yan D-M, Zhao Y-D, Ma Z-Y. In vitro and in vivo CT imaging using bismuth sulfide modified with a highly biocompatible Pluronic F127. Nanotechnology. 2014; 25(29): 295103.
35. Li Z, Hu Y, Howard KA, Jiang T, Fan X, Miao Z, Sun Y, Besenbacher F, Yu M. Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS nano. 2016; 10(1): 984-997.
36. Aydogan B, Li J, Rajh T, Chaudhary A, Chmura SJ, Pelizzari C, Wietholt C, Kurtoglu M, Redmond P. AuNP-DG: deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging. Mol Imaging Biol. 2010; 12(5): 463-467.
37. Shaabani E, Amini SM, Kharrazi S, Tajerian R. Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles. Nanomed J. 2017; 4(2):115-125.
38. Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Lunardi CN. In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng C. 2016; 65: 199-204.
39. Kubíčková L. Relaxivity of magnetic iron oxide nanoparticles containing diamagnetic cations. 2017.
40. Ta HT, Li Z, Wu Y, Cowin G, Zhang S, Yago A, Whittaker AK, Xu ZP. Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles. Mater Res Express. 2017; 4(11): 116105.
41. Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano. 2009; 3(11): 3663-3669.
42. Roohi F, Lohrke J, Ide A, Schütz G, Dassler K. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int J Nanomedicine. 2012; 7: 4447-4458.
43. Park JY, Kim SJ, Lee GH, Jin S, Chang Y, Bae JE, Chae KS. Various ligand-coated ultrasmall gadolinium-oxide nanoparticles: Water proton relaxivity and in-vivo T1 MR image. J Korean Phys Soc. 2015; 66(8): 1295-1302.
44. Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015; 10: 1727-1741.
45. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013; 113(3): 1641-1666.
46. Yin J, Chen D, Zhang Y, Li C, Liu L, Shao Y. MRI relaxivity enhancement of gadolinium oxide nanoshells with a controllable shell thickness. Phys Chem Chem Phys. 2018; 20(15): 10038-10047.
47. Luo N, Tian X, Xiao J, Hu W, Yang C, Li L, Chen D. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol. J Appl Phys. 2013; 113(16): 164306.
48. Faucher L, Gossuin Y, Hocq A, Fortin M-A. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology. 2011; 22(29): 295103(10pp).
49. Fang J, Chandrasekharan P, Liu X-L, Yang Y, Lv Y-B, Yang C-T, Ding J. Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials. 2014; 35(5): 1636-1642.
50. Engström M, Klasson A, Pedersen H, Vahlberg C, Käll P-O, Uvdal K. High proton relaxivity for gadolinium oxide nanoparticles. Magn Reson Mater Phy. 2006; 19(4): 180-186.
51. Babić-Stojić B, Jokanović V, Milivojević D, Požek M, Jagličić Z, Makovec D, Arsikin K, Paunović V. Gd2O3 nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging. J Magn Magn Mater. 2016; 403: 118-126.
52. Ahmad MW, Xu W, Kim SJ, Baeck JS, Chang Y, Bae JE, Chae KS, Park JA, Kim TJ, Lee GH. Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Sci Rep. 2015; 5: 8549.
53. Carrascosa P, Capuñay C, Deviggiano A, Bettinotti M, Goldsmit A, Tajer C, Carrascosa J, García MJ. Feasibility of 64-slice gadolinium-enhanced cardiac CT for the evaluation of obstructive coronary artery disease. Heart. 2010; 96(19): 1543-1549.
54. Regino CAS, Walbridge S, Bernardo M, Wong KJ, Johnson D, Lonser R, Oldfield EH, Choyke PL, Brechbiel MW. A dual CT-MR dendrimer contrast agent as a surrogate marker for convection-enhanced delivery of intracerebral macromolecular therapeutic agents. Contrast Media Mol Imaging. 2008; 3(1): 2-8.
55. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007; 129(24): 7661-7665.
56. Tian C, Zhu L, Lin F, Boyes SG. Poly (acrylic acid) bridged gadolinium metal–organic framework–gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging. ACS Appl Mater Interfaces. 2015; 7(32): 17765-17775.
57. Sun H, Yuan Q, Zhang B, Ai K, Zhang P, Lu L. GdIII functionalized gold nanorods for multimodal imaging applications. Nanoscale. 2011; 3(5): 1990-1996.
58. Alric C, Taleb J, Le Duc G, Mandon C, Billotey C, Le Meur-Herland A, Brochard T, Vocanson F, Janier M, Perriat P, Roux S, Tillement O. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc. 2008; 130(18): 5908-5915.
59. Zhou B, Xiong Z, Zhu J, Shen M, Tang G, Peng C, Shi X. PEGylated polyethylenimine-entrapped gold nanoparticles loaded with gadolinium for dual-mode CT/MR imaging applications. Nanomedicine. 2016; 11(13): 1639-1652.
60. Zhao W, Chen L, Wang Z, Huang Y, Jia N. An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent. J Nanopart Res. 2018; 20(2): 40.
61. Li K, Wen S, Larson AC, Shen M, Zhang Z, Chen Q, Shi X, Zhang G. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer. Int J Nanomedicine. 2013; 8: 2589-2600.
62. Chen Q, Wang H, Liu H, Wen S, Peng C, Shen M, Zhang G, Shi X. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem. 2015; 87(7): 3949-3956.
63. Li X, Wu M, Wang J, Dou Y, Gong X, Liu Y, Guo Q, Zhang X, Chang J, Niu Y. Ultrasmall bimodal nanomolecules enhanced tumor angiogenesis contrast with endothelial cell targeting and molecular pharmacokinetics. Nanomedicine: NBM. 2019; 15:252-263.
64. Yu S-B, Watson AD. Metal-based X-ray contrast media. Chem Rev. 1999; 99(9): 2353-2378.
65. Rameshbabu N, Sampath Kumar TS, Prabhakar TG, Sastry VS, Murty KVGK, Prasad Rao K. Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization. J Biomed Mater Res A. 2007; 80A(3): 581-591.
66. Madhumathi K, Kumar S, Sanjeed M, Muhammed S, Nazrudeen S. Silver and gadolinium ions co-substituted hydroxyapatite nanoparticles as bimodal contrast agent for medical imaging. Bioceram Dev Appl. 2014; 4: 1-4.
67. Jin X, Fang F, Liu J, Jiang C, Han X, Song Z, Chen J, Sun G, Lei H, Lu L. An ultrasmall and metabolizable PEGylated NaGdF 4: Dy nanoprobe for high-performance T 1/T 2-weighted MR and CT multimodal imaging. Nanoscale. 2015; 7(38): 15680-15688.
68. Wang T, Jia G, Cheng C, Wang Q, Li X, Liu Y, He C, Chen L, Sun G, Zuo C. Active targeted dual-modal CT/MR imaging of VX2 tumors using PEGylated BaGdF5 nanoparticles conjugated with RGD. New J Chem. 2018; 42(14): 11565-11572.
69. Li L, Lu Y, Lin Z, Mao AS, Jiao J, Zhu Y, Jiang C, Yang Z, Peng M, Mao C. Ultralong tumor retention of theranostic nanoparticles with short peptide-enabled active tumor homing. Mater Horiz. 2019 (In press), DOI: 10.1039/c9mh00014c.
70. Pan D, Schmieder AH, Wickline SA, Lanza GM. Manganese-based MRI contrast agents: past, present and future. Tetrahedron. 2011; 67(44): 8431-8444.
71. Wang R, Luo Y, Yang S, Lin J, Gao D, Zhao Y, Liu J, Shi X, Wang X. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma. Sci Rep. 2016; 6: 33844.
72. Simao T, Chevallier P, Lagueux J, Côté M-F, Rehbock C, Barcikowski S, Fortin M-A, Guay D. Laser-synthesized ligand-free Au nanoparticles for contrast agent applications in computed tomography and magnetic resonance imaging. J Mater Chem B. 2016; 4(39): 6413-6427.
73. Gharehaghaji N, Divband B. A novel MRI contrast agent synthesized by ion exchange method. Nanomed J. 2018; 5(1): 15-18.
74. Amoli-Diva M, Daghighi Asli M, Karimi S. FeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer. Nanomed J. 2017; 4(4): 218-223.
75. Kim DK KJ, Jeong YY, Jon SY. Antibiofouling polymer coated gold@iron oxide nanoparticle (GION) as a dual contrast agent for CT and MRI. Bull Korean Chem Soc. 2009; 30(8): 1855-1857.
76. Narayanan S, Sathy BN, Mony U, Koyakutty M, Nair SV, Menon D. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces. 2012; 4(1): 251-260.
77. Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, Zhang G, Shi X. Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem. 2012; 22(30): 15110-15120.
78. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X. Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl Mater interfaces. 2013; 5(20): 10357-10366.
79. Zhu J, Lu Y, Li Y, Jiang J, Cheng L, Liu Z, Guo L, Pan Y, Gu H. Synthesis of Au–Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale. 2014; 6(1): 199-202.
80. Wang G, Gao W, Zhang X, Mei X. Au Nanocage functionalized with ultra-small Fe3O4 nanoparticles for targeting T1–T2 dual MRI and CT imaging of tumor. Sci Rep. 2016; 6: 28258.
81. Lee N, Cho HR, Oh MH, Lee SH, Kim K, Kim BH, Shin K, Ahn T-Y, Choi JW, Kim Y-W. Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc. 2012; 134(25): 10309-10312.
82. Zhu J, Wang J, Wang X, Zhu J, Yang Y, Tian J, Cui W, Ge C, Li Y, Pan Y, Gu H. Facile synthesis of magnetic core–shell nanocomposites for MRI and CT bimodal imaging. J Mater Chem B. 2015; 3 (34): 6905-6910.
83. Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots:“Three-in-one” theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagnosis Photodyn Ther. 2019; 25: 504-514.
84. Gharehaghaji N, Divband B, Zareei L. Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast. J Magn Magn Mater. 2018; 456: 136-141.
85. Atashi Z, Divband B, Keshtkar A, Khatamian M, Farahmand-Zahed F, Nazarlo AK, Gharehaghaji N. Synthesis of cytocompatible Fe3O4@ ZSM-5 nanocomposite as magnetic resonance imaging contrast agent. J Magn Magn Mater. 2017; 438: 46-51.
86. Chou S-W, Shau Y-H, Wu P-C, Yang Y-S, Shieh D-B, Chen C-C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010; 132(38): 13270-13278.
87. Liang S, Zhou Q, Wang M, Zhu Y, Wu Q, Yang X. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomedicine. 2015; 10: 2325-2333.
88. Branca M, Pelletier F, Cottin B, Ciuculescu D, Lin CC, Serra R, Mattei JG, Casanove MJ, Tan R, Respaud M, Amiens C. Design of FeBi nanoparticles for imaging applications. Faraday Discuss. 2014; 175: 97-111.