Silica -magnetic inorganic hybrid nanomaterials as versatile sensing platform

Document Type : Review Paper


1 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia , Iran

4 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

5 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran


Several hybrid sensing materials, which are organized by interaction of organic molecules onto inorganic supports, have been developed as a novel and hopeful class of hybrid sensing probes. The hybrid silica-magnetic based sensors provide perfect properties for production of various devices in sensing technology. The hybridization of silica and magnetic NPs as biocompatible, biodegradable and superparamagnetic structures provides the opportunity to produce capable sensing materials. The fluorescence, electrochemical and calorimetric sensors based on silica-magnetic materials can be applied in quantitative detection of various analytes. This review touches upon a subject of the design and synthesis of different sensors based on magnetic-silica hybrid nanomaterials and discusses their applications for improved detection of analytes in environmental and biological fields.


1. Yang C , Wu J, Hou Y. Fe 3 O 4 nanostructures: synthesis, growth mechanism, properties and applications. Chem commun. 2011; 47: 5130-5141.
2. Xu C, Sun S. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton T. 2009; 5583-5591.
3. Zhang X, Xu X, Li T, Lin M, Lin X, Zhang H, Sun H, Yang Y. Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures. ACS Appl. Mater.2014; 6: 14552-14561.
4. Zhao Y, Tao T, Xiao G, Wei G, Li L, Liu C, Su H. Controlled synthesis and photocatalysis of sea urchin-like Fe 3 O 4@ TiO 2@ Ag nanocomposites. Nanoscale. 2016; 8: 5313-5326.
5. Zhao L, Liu H, Wang F, Zeng L. Design of yolk–shell Fe 3 O 4@ PMAA composite microspheres for adsorption of metal ions and pH-controlled drug delivery. J Mater Chem. 2014; 2: 7065-7074.
6. Ansari L, Malaekeh-Nikouei B. Magnetic silica nanocomposites for magnetic hyperthermia applications. INT J hyperther. 2017; 33: 354-363.
7. Ansari L, Jaafari M. R, Bastami T.R, Malaekeh-Nikouei B. Improved anticancer efficacy of epirubicin by magnetic mesoporous silica nanoparticles: in vitro and in vivo studies. Artif cell nanomed B. 2018; 46: 594-606.
8. Cristofanilli M, Hayes D.F, Budd G.T, Ellis M.J, Stopeck A, Reuben J.M, Doyle G. V, Matera J, Allard W.J, Miller M.C. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. Int J Clin Oncol. 2005; 23: 1420-1430.
9. Castillo R.R, Baeza A, Vallet-Regí M. Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomater Sci. 2017; 5: 353-377.
10. Lin J, Wei Z, Mao C. A label-free immunosensor based on modified mesoporous silica for simultaneous determination of tumor markers. Biosens. 2011; 29: 40-45.
11. Ding H, Zhang Y, Wang S, Xu J, Xu S, Li G. Fe3O4@ SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem mater. 2012; 24: 4572-4580.
12. Cheng G, Zhang J. L, Liu Y. L, Sun D. H, Ni J. Z. Synthesis of novel Fe 3 O 4@ SiO 2@ CeO 2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem commun. 2011; 47: 5732-5734.
13. Shao M, Ning F, Zhao J, Wei M, Evans D. G, Duan. X. Preparation of Fe3O4@ SiO2@ layered double hydroxide core–shell microspheres for magnetic separation of proteins. J am chem soc. 2012; 134: 1071-1077.
14. Wang L, Cole M, Li J, Zheng Y, Chen Y. P, Miller K. P, Decho A.W, Benicewicz B. C. Polymer grafted recyclable magnetic nanoparticles, Polym Chem. 2015; 6: 248-255.
15. Peng X, Wang Y, Tang X, Liu W. Functionalized magnetic core–shell Fe3O4@ SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg (II). Dyes pigments. 2011; 91: 26-32.
16. Wang Y, Peng X, Shi J, Tang X, Jiang J, Liu W. Highly selective fluorescent chemosensor for Zn2+ derived from inorganic-organic hybrid magnetic core/shell Fe 3 O 4@ SiO 2 nanoparticles. Nanoscale Res. Lett. 2012; 7: 86.
17. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X. Synthesis of amidoxime-functionalized Fe3O4@ SiO2 core–shell magnetic microspheres for highly efficient sorption of U (VI). Chem Eng. 2014; 235: 275-283.
18. Lee J.E, Lee N, Kim H, Kim J, Choi S.H, Kim J. H, Kim T, Song I. C, Park S.P, Moon W.K. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J am chem soc. 2009; 132: 552-557.
19. Gao W, Wang C, Muzyka K, Kitte S. A, Li J, Zhang W, Xu G. Artemisinin-luminol chemiluminescence for forensic bloodstain detection using a smart phone as a detector. Anal Chem. 2017; 89: 6160-6165.
20. Stewart A. J, Hendry J, Dennany L. Whole blood electrochemiluminescent detection of dopamine. Anal Chem. 2015; 87: 11847-11853.
21. Takahashi F, Nitta S, Shimizu R, Jin J. Electrochemiluminescence and voltammetry of tris (2, 2-bipyridine) ruthenium (II) with amphetamine-type stimulants as coreactants: An application to the discrimination of methamphetamine. Forensic Toxicol. 2018; 36: 185-191.
22. Miao S. S, Wu M. S, Ma L. Y, He H. J, Yang H. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode. Talanta. 2016; 158: 142-151.
23.Li G, Yu X, Liu D, Liu X, Li F, Cui H. Label-free electrochemiluminescence aptasensor for 2, 4, 6-trinitrotoluene based on bilayer structure of luminescence functionalized graphene hybrids. Anal Chem. 2015; 87: 10976-10981.
24. Zhang J. J, Kang T.F, Hao Y. C, Lu L. P, Cheng S.Y. Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystin-LR, Sens. Actuators B Chem.2015; 214: 117-123.
25. Kitte S. A, Gao W, Zholudov Y. T, Qi L, Nsabimana A, Liu Z, Xu G. Stainless steel electrode for sensitive luminol electrochemiluminescent detection of H2O2, glucose, and glucose oxidase activity. Anal Chem.2017; 89: 9864-9869.
26. Newman J, Tigwell L, Warner P, Turner A. Biosensors: boldly going into the new millennium. Sens Rev. 2001; 21: 268-271.
27. Joshi N, Basak S, Kundu S, De G, Mukhopadhyay A, Chattopadhyay K. Attenuation of the early events of α-synuclein aggregation: a fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe3O4 nanoparticles. Langmuir. 2015; 31: 1469-1478.
28. Lee S. H, Kumar, Tripathy S. Thin film optical sensors employing polyelectrolyte assembly. Langmuir. 2000; 16: 10482-10489.
29. Zhao Y, Zhu X, Liu H, Luo Y, Wang S, Shen M, Zhu M, Shi X. Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications. J mater chem b. 2014; 2: 7384-7393.
30. Poortmans P. M, Collette S, Kirkove C, Van Limbergen E, Budach V, Struikmans H, Collette L, Fourquet A, Maingon P, Valli M. Internal mammary and medial supraclavicular irradiation in breast cancer. N engl j med. 2015; 373: 317-327.
31. Cristofanilli M, Budd G. T, Ellis M. J, Stopeck A, Matera J, Miller M.C, Reuben J. M, Doyle G. V, Allard W.J, Terstappen L. W. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N engl j med. 2004; 351: 781-791.
32. Chauhan S. C, Singh A. P, Ruiz F, Johansson S. L, Jain M , Smith L. M, Moniaux N, Batra S. K. Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Mod Pathol. 2006; 19: 1386.
33. Wang W, Liu S, Li C, Wang Y, Yan C. Dual-target recognition sandwich assay based on core-shell magnetic mesoporous silica nanoparticles for sensitive detection of breast cancer cells. Talanta. 2018;182: 306-313.
34. Radke S. M, Alocilja E. C. A high density microelectrode array biosensor for detection of E. coli O157: H7.  Biosens Bioelectron. 2005; 20: 1662-1667.
35. Lan L, Yao Y, Ping J, Ying Y. Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Appl Mater Interfaces. 2017; 9: 23287-23301.
36. Chang Z. M, Wang Z, Shao D, Yue J, Lu M, Li L, Ge M, Yang D, Li M, Yan H. Fluorescent-magnetic Janus nanorods for selective capture and rapid identification of foodborne bacteria. Sens. Actuators B Chem. 2018, 260: 1004-1011.
37. Zhao Y, Gao W, Ge X, Li S, Du D, Yang H. CdTe@ SiO2 signal reporters-based fluorescent immunosensor for quantitative detection of prostate specific antigen. Anal Chim Acta. 2019; 1057: 44-50.
38. Bayramoglu G, Ozalp V. C, Dincbal U, Arica M. Y. Fast and sensitive detection of Salmonella in milk samples using aptamer-functionalized magnetic silica solid phase and MCM-41-aptamer gate system. Acs biomater-sci eng. 2018; 4: 1437-1444.
39. Chang Z, Wang Z, Shao D, Yue J, Xing H, Li L, Ge M, Li M, Yan H, Hu H. Shape engineering boosts magnetic mesoporous silica nanoparticle-based isolation and detection of circulating tumor cells. “ACS Appl. Mater Interfaces. 2018; 10: 10656-10663.
40. Qian J, Xu D, Ho S. L, Wang K, Wong M. S, Li H. W. Magnetically controlled immunosensor for highly sensitive detection of carcinoembryonic antigen based on an efficient “turn-on” cyanine fluorophore. Sens. Actuators B Chem. 2018; 258: 133-140.
41. Cui X, Yuqing Z, Cui J, Zheng Q, Bo W. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure, Spectrochimica Acta Part A. Spectrochim acta a. 2018; 191: 442-453.
42. Wang Q. Y, Huang W, Jiang X. L, Kang Y. J. Breast cancer cells synchronous labeling and separation based on aptamer and fluorescence-magnetic silica nanoparticles. Opt mater. 2018; 75: 483-490.
43. Yang Q, Wang J, Chen X, Yang W, Pei H, Hu N, Li Z, Suo Y, Li T, Wang J. The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. J Mater Chem. 2018; 6: 2184-2192.
44. Shah M, Balouch A, Alveroglu E. Sensitive fluorescence detection of Ni 2+ ions using fluorescein functionalized Fe 3 O 4 nanoparticles. J Mater Chem C. 2018; 6: 1105-1115.
45. Kang H, Jeong S, Park Y, Yim J, Jun B. H, Kyeong S, Yang J. K, Kim G, Hong S, Lee L. P. Near‐Infrared SERS Nanoprobes with Plasmonic Au/Ag Hollow‐Shell Assemblies for In Vivo Multiplex Detection. Adv Funct Mater. 2013; 23: 3719-3727.
46. Weissleder R. A clearer vision for in vivo imaging. NPG. 2001.
47. Hurley K. R, Ring H. L, Etheridge M, Zhang J, Gao Z, Shao Q, Klein N. D, Szlag V, Chung C, Reineke T. M. Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. Mol Pharm. 2016; 13: 2172-2183.
48.Lai J, Shah B. P, Zhang Y, Yang L, Lee K. B. Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles. ACS Nano. 2015; 9: 5234-5245.
49. Zhang Z, Liu C, Bai J, Wu C, Xiao Y, Li Y, Zheng J, Yang R Tan W. Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@ MS@ AgNPs): low premature release and multifunctional cancer theranostic platform.  ACS Appl. Mater Interfaces. 2015; 7: 6211-6219.
50. Briffa J. F, McAinch A. J, Poronnik P, Hryciw D. H. Adipokines as a link between obesity and chronic kidney disease. Am j physiol-renal. 2013; 305: F1629-F1636.
51. Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends endocrin met. 2014; 25: 348-355.
52. Wang X, Wang M, Jiang T, Wang F, Qing Y, Bu S, Zhou J. Dual-functional Fe3O4@ SiO2@ Ag triple core-shell microparticles as an effective SERS platform for adipokines detection. Colloid surf a physicochem eng asp. 2017; 535: 24-33.
53. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200: 373-383.
54. Antonyak M. A, Cerione R. A. Microvesicles as mediators of intercellular communication in cancer. Cancer Cell Signaling.2014; 147-173.
55. Zong S, Wang L, Chen C, Lu J, Zhu D, Zhang Y, Wang Z, Cui Y. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal methods-UK. 2016; 8: 5001-5008.
56. Luo X, Morrin A, Killard A. J, Smyth M. R. Application of nanoparticles in electrochemical sensors and biosensors, Electroanalysis. Electroanalysis. 2006; 18: 319-326.
57. Tan L, Shi Y. G.Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development. 2012; 139: 1895-1902.
58. Jiang W, Wu L, Duan J, Yin H, Ai S. Ultrasensitive electrochemiluminescence immunosensor for 5-hydroxymethylcytosine detection based on Fe3O4@ SiO2 nanoparticles and PAMAM dendrimers. Biosens Bioelectron. 2018; 99: 660-666.
59. Hashkavayi A. B, Raoof J. B. Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@ SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin. Biosens Bioelectron. 2017; 91: 650-657.
60. Willis A, Bender H.U, Steel G, Valle D. PRODH variants and risk for schizophrenia. J Amino Acids. 2008; 35: 673.
61. Hasanzadeh M, Nahar A. S, Hassanpour S, Shadjou N, Mokhtarzadeh A, Mohammadi J. Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of L-proline in biological fluids. Enzyme Microb Technol. 2017; 105: 64-76.
62. Wang L, Yao M, Fang X, Yao X. Novel Competitive Chemiluminescence DNA Assay Based on Fe 3 O 4@ SiO 2@ Au-Functionalized Magnetic Nanoparticles for Sensitive Detection of p53 Tumor Suppressor Gene.  Appl Biochem Biotechnol.2019; 187: 152-162.
63. Yuan Y, Wang J, Ni X, Cao Y. A biosensor based on hemoglobin immobilized with magnetic molecularly imprinted nanoparticles and modified on a magnetic electrode for direct electrochemical determination of 3-chloro-1, 2-propandiol. J Electroanal Chem. 2019; 834: 233-240.
64. Mehrotra P. Biosensors and their applications–A review. J. Oral Biol Craniofac Res. 2016; 6: 153-159.
65. Maruthupandy M, Rajivgandhi G, Muneeswaran T, Vennila T, Quero F, Song J. M. Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. Int J Biol Macromol. 2019; 121: 822-828.
66. Carr S, Seasonal and pandemic influenza: an overview with pediatric focus. Adv Pediatr. 2012; 59: 75-93.
67. Oh S, Kim J, Tran V. T, Lee D. K, Ahmed S. R, Hong J. C, Lee J, Park E. Y, Lee J. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza A virus detection.
ACS Appl Mater Interfaces. 2018; 10: 12534-12543.
68. Penha Filho R. A. C, Ferreira J. C, Kanashiro A. M. I, Darini A. L. D. C, Berchieri Junior A. Antimicrobial susceptibility of Salmonella Gallinarum and Salmonella Pullorum isolated from ill poultry in Brazil.  Cienc Rural. 2016; 46: 513-518.
69. Zhu H, Zhao G, Wang S.Q, Dou W. Photometric sandwich immunoassay for Salmonella pullorum and Salmonella gallinarum using horseradish peroxidase and magnetic silica nanoparticles. Microchim acta. 2017; 184: 1873-1880.
70. Jeong U, Shin H. H, Kim Y. Functionalized magnetic core–shell Fe@ SiO2 nanoparticles as recoverable colorimetric sensor for Co2+ ion. Chem eng j. 2015; 281: 428-433.
71. Deng H, Wang B, Wu M, Deng B, Xie L, Guo Y. Rapidly colorimetric detection of caffeine in beverages by silver nanoparticle sensors coupled with magnetic molecularly imprinted polymeric microspheres.  Int j food sci tech. 2019; 54: 202-211.