Fabrication of chitosan-hyaluronic acid nanoparticles and encapsulation into nanoparticles of dinitrosyl iron complexes as potential cardiological drugs

Document Type : Research Paper

Authors

1 Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia

2 Lomonosov Moscow State University, Moscow, Russia

3 3Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK

4 Department of Microbiology and Immunology, Medical University Plovdiv, Plovdiv, Bulgaria

Abstract

Objective(s): Currently, the development of nanoparticles for the stabilization and targeted delivery of cardiac drugs has gained significance. The present study aimed to develop nontoxic nanoparticles based on chitosan-hyaluronic acid (HA), encapsulate dinitrosyl iron complexes (DNICs, donors NO) into the nanoparticles to increase the stability and effectiveness of their action, and assess the effect of the nanoparticle-DNIC complex on the cell viability of cardiomyocytes.
Materials and Methods: Nanoparticles were obtained from chitosan-HA using the ionotropic gelation technology, and the morphology and size of the nanoparticles were determined using electron microscopy. The DNICs were built into the nanoparticles using the physical association method, and the stability of the nanoparticle-DNIC complexes and NO release was investigated using the electrochemical method.
Results: Analysis by the electron microscopy showed that the nanoparticles were homogeneous in terms of shape and had an optimal size of ~100 nanometers. In addition, the incorporation of the DNICs into the composition of the nanoparticles significantly increased the stability of the DNICs, while also prolonging the generation of NO and enhancing the yield of nitrogen monoxide. Fluorescence analysis indicated that the chitosan-HA nanoparticles increased the cell viability of rat cardiomyocytes.
Conclusion: The nanoparticles were fabricated from chitosan and HA. The encapsulation of the DNICs into the composition of the nanoparticles could stabilize these compounds, while prolonging and increasing the generated nitric oxide. The nanoparticle-DNICs were water-soluble, biocompatible, biodegradable, and nontoxic, which could be used as potential cardiac drugs for the treatment of cardiovascular diseases.

Keywords


1.Cardiovascular diseases. Informative newsletter of WHO. 2015; 317: 1-10.
2.Boulanger CM. Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol. 1999; 31: 39-49.
3.Kojda G, Harrison DG. Interactions between NO and reactive oxygen species: pathophysiologic importance in atherosclerosis, hypertension, diabetes, and heart failure. Cardiovasc Res. 1999; 43: 562-571.
4.Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43: 109-142.
5.Kapelko VI, Lakomkin VL, Abramov AA, Lukoshkova EV, Undrovinas NA, Asker Y, Khapchaev AY, Shirinsky VP. Protective effects of dinitrosyl iron complexes under oxidative stress in the heart. Oxid Med Cell Longev. 2017; 2017: 9456163.
6.Shmatko NYu, Korchagin DV, Shilov GV, Sanina NA, Aldoshin SM. Molecular and crystal structure of the cationic dinitrosyl iron complex with 1,3-dimethylthiourea. J Struct Chem. 2017; 58: 353-355.
7. Shahidi F, Synowiecki J. Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem. 1991; 39: 1527-1532.
8. Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004; 57(1): 35–52.
9. Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Delivery Rev. 2001; 52(2): 117–126.
10. Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Alonso MJ. Chitosan–PEG nanocapsules as new carriers for oral peptide delivery. Effect of chitosan pegylation degree. J Control Release. 2006; 111(3): 299–308.
11. Jiang X, Dai H, Leong KW, Goh SH, Mao HQ, Yang YY. Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. J Gene Med. 2006; 8(4): 477–487.
12. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007; 8(1): 146–152.
13. Lim ST, Martin GP, Berry DJ, Brown MB. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release. 2000; 66(2–3): 281–292.
14. Lim ST., Forbes B, Berry DJ, Martin GP, Brown MB. In vivo evaluation of novel hyaluronan/chitosan microparticulate delivery systems for the nasal delivery of gentamicin in rabbits. Int J Pharm. 2002; 231(1): 73–82.
15. Lourenco C, Teixeira M, Simoes S, Gaspar R. Steric stabilization of nanoparticles: size and surface properties. Int J Pharm. 1996; 138(1): 1–12.
16. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Del Rev. 2002; 54(5): 631–651.
17. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2(12): 751–760.
18. Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer. 2004; 108(5): 780–789.
19. Choi KY, Min KH, Na JH, Choi K, Kim K, Park JH, Kwon IC, Jeong SY. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J Mater Chem. 2009; 19(24): 4102–4107.
20. Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit R. Paclitaxel- clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010; 31(27): 7106–7114.
21. Yang XY, Li YX, Li M, Zhang L, Feng LX, Zhang N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 2013; 334(2): 338-345.
22. Almond A. Hyaluronan. Cell Mol Life Sci. 2007; 64(13): 1591–1596.
23. Entwistle J, Hall CL, Turley EA. HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem. 1996; 61(4): 569–577.
24. Menzel EJ., Farr C. Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett. 1998; 131(1): 3–11.
25. Osipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin Drug Deliv. 2010; 7(6): 681-703.
26. Day AJ, Prestwich GD. Hyaluronan-binding proteins: tying up the giant. J Biol Chem. 2002; 277(7): 4585–4588.
27. Yang B, Zhang L, Turley EA. Identification of two hyaluronan-binding domains in the hyaluronan receptor RHAMM. J Biol Chem. 1993; 268(12): 8617–8623.
28. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990; 61(7): 1303–1313.
29. Choi KY, Saravanakumar G, Park JH, Park K. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces. 2012; 99: 82–94.
30. Kakizaki I, Ibori N, Kojima K, Yamaguchi M, Endo M. Mechanism for the hydrolysis of hyaluronan oligosaccharides by bovine testicular hyaluronidase. FEBS J. 2010; 277(7): 1776 –1786.
31. Giri TK., Verma S, Alexander A, Ajazuddin BH, Tripathy M, Tripathi DK. Crosslinked biodegradable alginate hydrogel floating beads for stomach site specific controlled delivery of metronidazole. Farmacia. 2013; 61(3): 533-550.
32. McMullan D. Scanning electron microscopy 1928–1965. Scanning. 1995; 17(3): 175–185. doi:10.1002/sca.4950170309.
33. Sanina NА, Aldoshin SМ, Shmatko NYu, Korchagin DV, Shilov GV, Knyaz’kina ЕА, Ovanesyan NS, Kulikov АV. Nitrosyl iron complexes with enhanced NO releasing ability: synthesis, structure and properties of new type of salts with DNIC cations [Fe(SC(NH2)2)2(NO)2]+ . New J Chem. 2015; 39: 1022-1030.
34. Johnson DC, LaCourse WR. Liquid chromatography with pulsed electrochemical detection at gold and platinum electrodes. Analytical Chemistry. 1990; 62(10): 589A-597A
35. Zhang X, Broderick MP. Amperometric detection of nitric oxide. Mod Asp Immunobiol. 2000; 1: 160–165.
36. Schreer A, Tinson C, Sherry JP, Schirmer K. Application of Alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Anal Biochem. 2005; 344(1): 76–85. DOI:10.1016/j.ab.2005.06.00937. Parveen A, Malashetty VB, Mantripragada B, Yalagatti MS, Abbaraju V, Deshpande R. Bio-functionalized gold nanoparticles: Benign effect in Sprague-Dawley rats by intravenous administration. Saudi J Biol Sci. 2017; 24(8): 1925-1932.
38. Oleshkevich E, Teixidor F, Rosell A, Viñas C. Merging icosahedral boron clusters and magnetic nanoparticles: aiming toward multifunctional nanohybrid materials. Inorg Chem. 2018; 57(1): 462-470.
39. Mondal S, Manivasagan P, Bharathiraja S, Santha Moorthy M, Kim HH, Seo H, Lee KD, Oh J. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application. Int J Nanomedicine. 2017; 12: 8389-8410.
40. Mazitova GT, Kiyenskaya KI, Hlopetskii OG, Nepomniashchaia KV, Butorova IA. Antimicrobial activity vs. shape of zinc oxide nanoparticles. Butlerov communications. 2017; 52(12): 119-123.
41. Hess KL, Oh E, Tostanoski LH, Andorko JI, Susumu K, Deschamps JR, Medintz IL, Jewell CM. Engineering immunological tolerance using quantum dots to tune the density of self-antigen display. Adv Funct Mater. 2017; 27(22): pii:1700290. https://doi.org/10.1002/adfm.201700290
42. Pyshkina OA, Boyeva ZhA, Volosova NS, Sergeev VG. Peculiarities of stable multi-walled carbon nanotubes dispersions formation in the presence of polycarbonic acids. Butlerov communications. 2013; 35(8): 20-24.
43. Chowdhury SR, Mukherjee S, Das S, Patra CR, Iyer PK. Multifunctional (3-in-1) cancer theranostics applications of hydroxyquinoline-appended polyfluorene nanoparticles. Chem Sci. 2017; 8(11): 7566-7575.
44. Xu X, Wang X, Luo W, Qian Q, Li Q, Han B, Li Y. Triple cell-responsive nanogels for delivery of drug into cancer cells. Colloids Surf B Biointerfaces. 2018; 163: 362-368. doi: 10.1016/j.colsurfb.2017.12.047.
45. Ambhore NS, Satyanarayana Raju KR, Mulukutla S, Yamjala K, Mohire S, Satyanarayana Reddy Karri VV, Gupta S, Murthy V, Elango K. Targeting of 1,9-Pyrazoloanthrone an c-Jun-N-terminal kinase inhibitor using liposomes for effective management of parkinson’s disease. Iran J Pharm Res. 2017; 16(4): 1463-1478.
46. Katsuki S, Matoba T, Koga JI, Nakano K, Egashira K. Anti-inflammatory nanomedicine for cardiovascular disease. Front Cardiovasc Med. 2017; 4: 87. doi: 10.3389/fcvm.2017.00087
47. Alekseev AA, Brylev MI, Korolev VL, Lotorev DS, Pavlova LA. Development of the technology of the freeze-dried nanoparticles of antithrombotic heteromerous peptide. Butlerov communications. 2016; 46(6): 28-31.
48. Wang PG, Xian M, Tang XP, Wu XJ, Wen Z, Cai TW, Janczuk AJ. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002; 102: 1091–1134.
49. Riccio DA, Schoenfisch MH. Nitric oxide release: part I. Macromolecular scaffolds. Chem Soc Rev. 2012; 41(10): 3731–3741.

50. Quinn JF, Whittaker MR, Davis TP. Delivering nitric oxide with nanoparticles. J Control Release. 2015; 205: 190-205. doi: 10.1016/j.jconrel.2015.02.007.
51. Zhang H, Annich GM, Miskulin J, Stankiewicz K, Osterholzer K, Merz SI, Bartlett RH, Meyerhoff ME. Nitric oxide-releasing fumed silica particles: synthesis, characterization, and biomedical application. J Am Chem Soc. 2003; 125(17): 5015–5024.
52. Rothrock AR, Donkers RL, Schoenfisch MH. Synthesis of nitric oxide-releasing gold nanoparticles. J Am Chem Soc. 2005; 127(26): 9362–9363.
53. Stasko NA, Schoenfisch MH. Dendrimers as a scaffold for nitric oxide release. J Am Chem Soc. 2006; 128(25): 8265–8271.
54. Duong HT, Kamarudin ZM, Erlich RB, Li Y, Jones MW, Kavallaris M, Boyer C, Davis TP. Intracellular nitric oxide delivery from stable NO-polymeric nanoparticle carriers. Chem Commun. 2013; 49(39): 4190–4192.
55. Duong HTT, Jung K, Kutty SK, Agustina S, Adnan NNM, Basuki JS, Kumar N, Davis TP, Barraud N, Boyer C. Nanoparticle (star polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation. Biomacromolecules. 2014; 15: 2583–2589.
56. Cabrales P, Han G, Roche C, Nacharaju P, Friedman AJ, Friedman JM. Sustained release nitric oxide from long-lived circulating nanoparticles. Free Radic Biol Med. 2010; 49(4): 530–538.
57. Cabrales P, Han G, Nacharaju P, Friedman AJ, Friedman JM. Reversal of hemoglobin-induced vasoconstriction with sustained release of nitric oxide. Am J Physiol Heart Circ Physiol. 2011; 300(1): H49–H56.
58. Nachuraju P, Friedman AJ, Friedman JM, Cabrales P. Exogenous nitric oxide prevents cardiovascular collapse during hemorrhagic shock. Resuscitation. 2011; 82(5): 607–613.
59. Johnson TA, Stasko NA, Matthews JL, Cascio WE, Holmuhamedov EL, Johnson CB, Schoenfisch MH. Reduced ischemia/reperfusion injury via glutathione-initiated nitric oxide-releasing dendrimers. Nitric Oxide. 2010; 22 (1): 30–36.
60. Akentieva N. RHAMM-target peptides inhibit invasion of breast cancer cells. EuroBiotechnology J. 2017; 1(2): 138-148.
61. Rizzardi AE, Vogel RI, Koopmeiners JS, Forster CL, Marston LO, Rosener NK, Akentieva N, Price MA, Metzger GJ, Warlick CA, Henriksen JC, Turley EA, McCarthy JB, Schmechel SC. Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer. 2014; 120(12): 1800-1809.
62. Esguerra KV, Tolg C, Akentieva N, Price M, Cho CF, Lewis JD, McCarthy JB, Turley EA, Luyt LG. Identification, design and synthesis of tubulin-derived peptides as novel hyaluronan mimetic ligands for the receptor for hyaluronan-mediated motility (RHAMM/HMMR). Integr Biol (Camb). 2015; 7(12): 1547-1560.
63. Auzenne E, Ghosh SC, Khodadadian M, Rivera B, Farquhar D, Price RE, Ravoori M, Kundra V, Freedman RS, Klostergaard J. Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia. 2007; 9(6): 479-486.
64. Bassi PF, Volpe A, D’Agostino D, Palermo G, Renier D, Franchini S, Rosato A, Racioppi M. Paclitaxel-hyaluronic acid for intravesical therapy of bacillus Calmette-Guérin refractory carcinoma in situ of the bladder: results of a phase I study. J Urol. 2011; 185(2): 445-449.
65. Galer CE, Sano D, Ghosh SC, Hah JH, Auzenne E, Hamir AN, Myers JN, Klostergaard J. Hyaluronic acid-paclitaxel conjugate inhibits growth of human squamous cell carcinomas of the head and neck via a hyaluronic acid-mediated mechanism. Oral Oncol. 2011; 47(11): 1039-1047.
66. Journo-Gershfeld G, Kapp D, Shamay Y, Kopeček J, David A. Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm Res. 2012; 29(4): 1121-1133.
67. Yu J, Lee HJ, Hur K, Kwak MK, Han TS, Kim WH, Song SC, Yanagihara K, Yang HK. The antitumor effect of a thermosensitive polymeric hydrogel containing paclitaxel in a peritoneal carcinomatosis model. Invest New Drugs. 2012; 30(1): 1-7.
68. Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug Chem. 1999; 10(5): 755-763.
69. Rosato A, Banzato A, De Luca G, Renier D, Bettella F, Pagano C, Esposito G, Zanovello P, Bassi P. HYTAD1-p20: a new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urol Oncol. 2006; 24(3): 207-215.
70. Saravanakumar G, Choi KY, Yoon HY, Kim K, Park JH, Kwon IC, Park K. Hydrotropic hyaluronic acid conjugates: synthesis, characterization, and implications as a carrier of paclitaxel. Int J Pharm. 2010; 394 (1-2): 154-161.
71. Eliaz RE, Nir S, Szoka FC Jr. Interactions of hyaluronan-targeted liposomes with cultured cells: modeling of binding and endocytosis. Methods Enzymol. 2004; 387: 16-33.
72. Eliaz RE, Szoka FC Jr. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 2001; 61(6): 2592-2601.
73. Hyung H, Kim JH. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol. 2008; 42(12): 4416-4421.
74. Wu Y, Lin QL, Chen ZX, Wu W, Xiao HX. Preparation of chitosan oligomers COS and their effect on the retrogradation of intermediate amylose rice starch. J Food Sci Technol. 2012; 49(6): 695-703.
75. El-Dakdouki MH, Zhu DC, El-Boubbou K, Kamat M, Chen J, Li W, Huang X. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules. 2012; 13 (4): 1144-1151.
76. Fischer PM, Zhelev N. Transport vectors. Patent US7101967 B2; 2006.
77. Akentieva NP, Sanina NA, Gizatullin AR, Shmatko NY, Goryachev NS, Shkondina NI, Prikhodchenko TR. Aldoshin SM. The inhibitory effect of dinitrosyl iron complexes (NO donors) on myeloperoxidase activity. Dokl Biochem Biophys. 2017; 477(1): 389–393.