1.Heydari-Majd M, Ghanbarzadeh B, Shahidi-Noghabi M, Najafi M. A, Hosseini M. A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packag. Shelf Life.2019; 19: 94-103.
2.Khaneghah A. M, Hashemi S. M. B, Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Process. 2018; 111: 1-19.
3.Ozdemir M, Floros J. D. Active food packaging technologies. Crit Rev Food Sci Nutr. 2004; 44(3): 185-193.
4.Vilela C, Pinto R. J, Coelho J, Domingues M. R, Daina S, Sadocco P, Santos S. A, Freire C. S. Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocoll. 2017; 73: 120-128.
5.Leceta I, Guerrero P, De la Caba K. Functional properties of chitosan-based films. Carbohydr Polym. 2013; 93(1), 339-346.
6.van den Broek L. A, Knoop R. J, Kappen F. H, Boeriu C. G. Chitosan films and blends for packaging material. Carbohydr Polym. 2015; 116, 237-242.
7.Siracusa V, Lotti N. Intelligent packaging to improve shelf life. Food Quality and Shelf Life. 2019; 261.
8.Cha D. S, Chinnan M. S. Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr. 2004; 44(4): 223-237.
9.Shchipunov Y. Bionanocomposites: Green sustainable materials for the near future. Pure Appl Chem. 2012; 84(12): 2579-2607.
10.Salarbashi D, Tafaghodi M, Bazzaz B. S. F. Soluble soybean polysaccharide/TiO2 bionanocomposite film for food application. Carbohydr Polym. 2018; 186: 384-393.
11.Rostami H, Esfahani A. A. Development a smart edible nanocomposite based on mucilage of Melissa officinalis seed/montmorillonite (MMT)/curcumin. Int J Biol Macromol. 2019; 141: 171-177.
12.Solghi S, Emam‐Djomeh Z, Fathi M, Farahani F. The encapsulation of curcumin by whey protein: Assessment of the stability and bioactivity. J Food Process Eng. 2020; 13: 403.
13.Goel A, Kunnumakkara A. B, Aggarwal B. B. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008; 75(4): 787-809.
14.Moradia M, Tajik H, Almasi H, Forough M, Ezati P. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr Polym. 2019; 222: 115030.
15.ASTM, E. Standard test methods for water vapor transmission of materials.
16.Salarbashi D, Mortazavi S. A, Noghabi M. S, Bazzaz B. S. F, Sedaghat N, Ramezani M, Shahabi-Ghahfarrokhi I. Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydr Polym. 2016; 140: 220-227.
17.Huang X, Brazel C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001; 73(2-3): 121-136.
18.Kumar S, Thakur K. Bioplastics-classification, production and their potential food applications. Journal of Hill Agri. 2017; 8(2): 118-129.
19.Wang L, Xue J, Zhang Y. Preparation and characterization of curcumin loaded caseinate/zein nanocomposite film using pH-driven method. Ind Crops Prod. 2019; 130: 71–8.
20.Musso Y. S, Salgado P. R, Mauri A. N. Smart edible films based on gelatin and curcumin. Food Hydrocoll. 2017; 66, 8-15.
21.Salarbashi D, Bazeli J, Tafaghodi M. Environment-friendly green composites based on soluble soybean polysaccharide: A review. Int J Biol Macromol. 2019; 122: 216-223.
22.Roy S, Rhim J.W. Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocoll. 2020; 98: 105302.
23.Shellhammer T, Krochta J. Whey protein emulsion film performance as affected by lipid type and amount. J Food Sci. 1997; 62(2): 390-394.
24.Vimala K, Mohan Y. M, Varaprasad K, Narayana Redd N, Ravindra S, Naidu N. S, Mohana Raju K. J Biomater Nanobiotechnol. 2011; 2: 55-64.
25.da Silva A. C, de Freitas Santos P. D, do Prado Silva J. T, Leimann F. V, Bracht L, Gonçalves, O. H. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci Technol. 2018; 72: 74-82.
26.Varaprasad K, Vimala K, Ravindra S, Reddy N. N, Reddy G. V. S, Raju K. M. Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J Mater Sci Mater Med. 2011; 22(8): 1863-1872.
27.Burt S. Essential oils: Their antibacterial properties and potential applications infoods: A review. Int. J. Biol. Macromol. 2004; 94(3): 223–253.
28.Aggor F. S, Ahmed E. M, El-Aref A, Asem M. Synthesis and characterization of poly (acrylamide-co-acrylic acid) hydrogel containing silver nanoparticles for antimicrobial applications. J Am Sci. 2010; 6(12): 648-656.
29.Heydari-Majd M, Rezaeinia H, Shadan M, Ghorani B, Tucker, N. Enrichment of zein nanofibre assemblies for therapeutic delivery of Barije (Ferula gummosa Boiss) essential oil. J Drug Deliv Sci Technol. 2019; 54:101290.
30.Kiryukhin M. V, Lau H. H, Goh S. H, Teh C, Korzh V, Sadovoy A. A membrane film sensor with encapsulated fluorescent dyes towards express freshness monitoring of packaged food. Talanta. 2018; 182: 187-192.
31.Nopwinyuwong A, Trevanich S, Suppakul P. Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta. 2010; 81(3): 1126-1132.
32.Pacquit A, Frisby J, Diamond D, Lau K. T, Farrell A, Quilty B, Diamond D. Development of a smart packaging for the monitoring of fish spoilage. Food Chem. 2007; 102(2): 466-470.
33.Rukchon C, Nopwinyuwong A, Trevanich S, Jinkarn T, Suppakul P. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta. 2014; 130: 547-554.
34.Salinas Y, Ros-Lis J. V, Vivancos J.L, Martínez-Máñez R, Marcos M. D, Aucejo S, Herranz N, Lorente I. Monitoring of chicken meat freshness by means of a colorimetric sensor array. Analyst. 2012; 137(16): 3635-3643.
35.Pereira P. F, Andrade C. T. Optimized pH-responsive film based on a eutectic mixture-plasticized chitosan. Carbohydr Polym. 2017; 165: 238-246.