1.Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, K Hiroaki. Structural basis for the spectral difference in luciferase bioluminescence. Nature. 2006; 440(7082): 372-376.
2. Ebrahimi M, Hosseinkhani S, Heydari A, Khavari-Nejad RA, Akbari J. Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator. Appl Biochem Biotech. 2012; 168(3): 604-615.
3.Kargar F, Mortazavi M, Savardashtaki A, Hosseinkhani S, Mahani MT, Ghasemi Y. Genomic and protein structure analysis of the luciferase from the Iranian bioluminescent beetle, Luciola sp. Int J Biol Macromol. 2019; 124: 689-698.
4. Zomorodimanesh S, Hosseinkhani S, Baharifar H, Yousefi F, Farsad J. Expression and Purification of Firefly Luciferase and its Interaction with Cadmium Telluride Quantum Dot. Bmmj. 2019; 5(1): 35-46.
5. Ataei F, Hosseinkhani S, Khajeh K. Limited proteolysis of luciferase as a reporter in nanosystem biology: a comparative study. Photochem Photobiol. 2009; 85(5): 1162-1167.
6. Conti E, Franks NP, Brick P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure. 1996; 4(3): 287-298.
7. De Wet JR, Wood KV, Helinski DR, DeLuca M. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. P Natl Acad Sci. 1985; 82(23): 7870-7873.
8. Gould SJ, Subramani S. Firefly luciferase as a tool in molecular and cell biology. Anal Biochem. 1988; 175(1): 5-13.
9. Ebrahimi M, Hosseinkhani S, Heydari A, Khavari-Nejad RA, Akbari J. Controversial effect of two methylguanidine-based ionic liquids on firefly luciferase. Photoch Photobio Sci. 2012; 11(5): 828-834.
10. Branchini BR, Southworth TL, Khattak NF, Michelini E, Roda A. Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem. 2005; 345(1): 140-148.
11. Tisi L, White P, Squirrell D, Murphy M, Lowe C, Murray J. Development of a thermostable firefly luciferase. Anal Chim Acta. 2002; 457(1): 115-123.
12. Marques SM, Esteves da Silva JC. Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. Iubmb. 2009; 61(1): 6-17.
13. Fraga H. Firefly luminescence: a historical perspective and recent developments. PHOTOCH PHOTOBIO SCI. 2008; 7(2): 146-158.
14. Moradi M, Hosseinkhani S, Emamzadeh R. Implication of an unfavorable residue (Thr346) in intrinsic flexibility of firefly luciferase. Enzyme Microb Tech. 2012; 51(4): 186-192.
15. Fraga H, Fernandes D, Novotny J, Fontes R, Esteves da Silva JC. Firefly luciferase produces hydrogen peroxide as a coproduct in dehydroluciferyl adenylate formation. Chembiochem. 2006; 7(6): 929-935.
16. Baldwin TO. Firefly luciferase: the structure is known, but the mystery remains. Structure. 1996; 4(3): 223-228.
17. Noori AR, Hosseinkhani S, Ghiasi P, Akbari J, Heydari A. Magnetic nanoparticles supported ionic liquids improve firefly luciferase properties. Appl Biochem Biotech. 2014; 172(6): 3116-27.
18. Lohrasbi-Nejad A, Torkzadeh-Mahani M, Hosseinkhani S. Hydrophobin-1 promotes thermostability of firefly luciferase. Febs J. 2016; 283(13): 2494-2507
19. Noori AR, Hosseinkhani S, Ghiasi P, Heydari A, Akbari J. Water-miscible ionic liquids as novel effectors for the firefly luciferase reaction. Eng Life Sci. 2013; 13(2): 201-209.
20. Sharma A, Gupata MK, Gupta R. Quantum phenomena in zero dimensions: quantum dots. Ijritcc. 2013; 1(1): 1-18
21. Peng C-W, Li Y. Application of Quantum Dots-Based Biotechnology in Cancer Diagnosis: Current Status and Future Perspectives. Journal of Nanomaterials. 2010[(article ID 676839): 11 pp]
22. Mansur A, Mansur H, González J. Enzyme-polymers conjugated to quantum-dots for sensing applications. Sensors. 2011; 11(10): 9951-9972.
23. Byers RJ, Hitchman ER. Quantum dots brighten biological imaging. Prog Histochem Cyto. 2011; 45(4): 201-237.
24. Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Edit. 2008; 47(40): 7602-7625.
25. Branchini BR, Ablamsky DM, Murtiashaw MH, Uzasci L, Fraga H, Southworth TL. Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem. 2007; 361(2): 253-262.
26. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng Ks, Luk Cm, Zeng S, Hao J, Lau Sp. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. Acs Nano. 2012; 6(6): 5102-5110.
27. Chen W, Lv G, Hu W, Li D, Chen S, Dai Z. Synthesis and applications of graphene quantum dots: a review. Nanotechnology Reviews. 2018; 7(2): 157-185.
28. Xiaoyan Z, Hongxia B, Zaijun L, Junkang L. Graphene quantum dot-modified lipase for synthesis of L-menthyl acetate with improved activity, stability and thermostability. Adv Synth Catal. 2016; 1: 1-6.
29. Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Ag. 2000; 13(3): 155-168.
30. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. Graphene for electrochemical sensing and biosensing. Trac-Trend Anal Chem. 2010; 29(9): 954-965.
31. Shehab M, Ebrahim S, Soliman M. Graphene quantum dots prepared from glucose as optical sensor for glucose. J Lumin. 2017; 184: 110-116.
32. Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010; 22(6): 734-738.
33. Moases Ghafary S, Nikkhah M, Hatamie S, Hosseinkhani S. Simultaneous Gene Delivery and Tracking through Preparation of Photo-Luminescent Nanoparticles Based on Graphene Quantum Dots and Chimeric Peptides. Sci Rep. 2017; 7: 9552.
34. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2): 248-254.
35. Mir M, Ishtiaq S, Rabia S, Khatoon M, Zeb A, Khan GM, Rehmen Au, Din Fu. Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett. 2017; 12(1): 500.
36. Bilal M, Mehmood S, Rasheed T, Iqbal H. Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magncz. 2019; 5(3): 42.
37. Mehrabi M, Hosseinkhani S, Ghobadi S. Stabilization of firefly luciferase against thermal stress by osmolytes. Int J Biol Macromol. 2008; 43(2): 187-191.
38. Käkinen A, Ding F, Chen P, Mortimer M, Kahru A, Ke PC. Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. NANOTECHNOL. 2013; 24(34): 345101.
39. Gupta S, Smith T, Banaszak A, Boeckl J. Graphene Quantum Dots Electrochemistry and Development of Ultrasensitive Enzymatic Glucose Sensor. MRS Advances. 2018; 3(15-16): 831-847.
40. Muthurasu A, Ganesh V. Horseradish peroxidase enzyme immobilized graphene quantum dots as electrochemical biosensors. Appl Biochem Biotech. 2014; 174(3): 945-959.
41. Hosseinkhani S. Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell Mol Life Sci. 2011; 68(7): 1167-1182.
42. Alipour BS, Hosseinkhani S, Ardestani SK, Moradi A. The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase. Photoch Photobio Sci. 2009; 8(6): 847-55.
43. Amini-Bayat Z, Hosseinkhani S, Jafari R, Khajeh K. Relationship between stability and flexibility in the most flexible region of Photinus pyralis luciferase. Bba-Proteins Proteom. 2012; 1824(2): 350-358.