A novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes

Authors

1 Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran

3 Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran

5 Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Objective(s):
This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at λ807.
Materials and Methods:
First a DNA aptamer recognizing cocaine was non-covalently immobilized on the surface of single walled carbon nanotubes and consequently dissolution of SWNTs was occurred. Vis-NIR absorption (A807nm) of dispersed, soluble aptamer-SWNTs hybrid, before and after incubation with cocaine was measured using a CECIL9000 spectrophotometer.
Results:
This carbon nanotube setup enabled the reliable monitoring of the interaction of cocaine with its cognate aptamer by aggregation of SWNTs in the presence of cocaine.
Disscusion:
This assay system provides a mean for the label-free, concentration-dependent, and selective detection of cocaine with an observed detection limit of 49.5 nM.

Keywords


1. Liu J, Lu Y. Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors. J Am Chem Soc. 2007; 129: 8634–8643.
2. Liu J, Lu Y. Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed. 2006; 45: 90–94.
3. Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small. 2008; 4: 1196–1200.
4. Stojanovic MN, Landry DW. Aptamer-based colorimetric probe for cocaine. J Am Chem Soc. 2002; 124: 9678–9679.
5. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc. 2006; 128: 3138–3139.
6. Stojanovic MN, Parada P, de, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001; 123: 4928–4931.
7. Stojanovic MN, de Parada P, Landry DW. Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc. 2000; 122: 11547–11548.
8. Shlyahovsky B, Di L, Weizmann Y, Nowarski R, Kotler M, Willner I. Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc. 2007; 12: 3814–3815.
9. Liu J, Lee JH, Lu Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem. 2007; 79: 4120–4125.
10. Jhaveri SD, Kirby R, Conrad R, Maglott EJ, Bowser M, Kennedy RT, Glick G, Ellington AD. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc. 2000; 122: 2469–2473.
11. Liss M, Petersen B, Wolfe H, Prohaska E. An aptamer-based quartz crystal protein biosensor. Anal Chem. 2002; 74: 4488–4495.
12. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA Cocaine assay by aptamer–SWNTs conjugate ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249: 505–510.
13. Nutiu R, Li Y. Structure-switching signaling aptamers. J Am Chem Soc. 2003; 125: 4771–4778.
14. Avouris, P. Molecular electronics with carbon nanotubes. Acc Chem Res. 2002; 35: 1026-1034.
15. Bachilo, SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. Structure-assigned optical spectra of single-walled carbon nanotubes. Science. 2002; 298: 2361-2366.
16. Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater. 2005; 4: 86-92.
17. Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater. 2005; 17: 2793-2799.
18. Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EOR. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta. 1988; 933: 184-192.
19. Chen H, Yu C, Jiang C, Zhang S, Liu B, Kong J. A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. Chem Commun. 2009; 33: 5006-8.
20. Tasis D, Tagmatarchis N, Bianco A, Prato M: Chemistry of carbon nanotubes. Chem Rev. 2006; 106: 1105-1136.
21. Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Gu L, Zhou B, Sun YP: Advances toward bioapplications of carbon nanotubes. J Mater Chem. 2004; 14: 527-541.
22. Bahr JL, Tour JM: Covalent chemistry of single-wall carbon nanotubes. J Mater Chem. 2002; 12: 1952-1958.
23. Banerjee S, Hemraj-Benny T, Wong SS: Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater (Weinheim, Germany). 2005; 17: 17-29.
24. Tasis D, Tagmatarchis N, Georgakilas V, Prato M. Soluble carbon nanotubes. Chem Eur J. 2003; 9: 4000-4008.
25. Sun YP, Fu K, Lin Y, Huang W: Functionalized carbon nanotubes: properties and applications. Acc Chem Res. 2002; 35: 1096-1104.
26. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC: Chemistry of Single-Walled Carbon Nanotubes. Acc Chem Res. 2002; 35: 1105-1113.
27. Chou SG, Plentz F, Jiang J, Saito R, Nezich D, Ribeiro HB, Jorio A, Pimenta MA, Samsonidze GG, Santos AP, Zheng M, Onoa GB, Semke ED, Dresselhaus G, Dresselhaus MS: Phonon-Assisted Excitonic Recombination Channels Observed in DNA-Wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy. Phys Rev Lett. 2005; 94: 127402/1-127402/4.
28. Arnold MS, Guler MO, Hersam MC, Stupp SI: Encapsulation of Carbon Nanotubes by Self-Assembling Peptide Amphiphiles. Langmuir. 2005; 21: 4705-4709.
29. Kam NWS, Jessop TC, Wender PA, Dai H: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc. 2004; 126: 6850-6851.
30. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS: Optical Detection of DNA Conformational Poly-morphism on Single-Walled Carbon Nanotubes. Science. 2006; 311: 508-511.
31. Cekan P, Jonsson Eض, Sigurdsson ST. Folding of the cocaine aptamer studied by EPR and fluorescence spectroscopies using the bifunctional spectroscopic probe C. Nucleic Acids Res. 2009; 37(12): 3990-3995.
32. Chen H, Yu C, Jiang C, Zhang S, Liu B, Kong J. A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. Chem Commun. 2009; 33: 5006-5008.
33. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31(13): 3406-3415.
34. Taghdisi SM, Lavaee P, Ramezani M, Abnous K. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm. 2011; 77(2): 200-206.
35. Hamula CLA, Guthrie JW, Zhang H, Li XF, Le XC. Selection and analytical applications of aptamers. Trends Anal Chem. 2006; 7: 681–691.
36. Zhou J, Ellis AV, Kobus H, Voelcker NH. Aptamer sensor for cocaine using minor groove binder based energy transfer. Anal chim acta. 2012; 719: 76-81.
37. Cone EJ, Hillsgrove M, Darwin WD. Simultaneous measurement of cocaine, cocaethylene, their metabolites, and "crack" pyrolysis products by gas chromatography-mass spectrometry. Clinic Chem. 1994;40: 1299–1305.
38. Chinn DM, Crouch DJ, Peat MA, Finkle BS, Jennison TA. Gas chromatography-chemical ionization mass spectrometry of cocaine and its metabolites in biological fluids. J Anal Toxicol. 1980; 4: 37–42.