Imaging properties of Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites as contrast agents in spectral X-ray computed tomography: A Monte Carlo simulation study

Document Type : Research Paper

Authors

1 Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran

2 Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran

3 Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Objective(s): In this paper, we evaluated some imaging properties of Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites as contrast agents in spectral CT. For this purpose, we simulated a spectral CT scanner with photon-counting detectors (PCDs) in 6 energy bins by a Monte Carlo simulator.
Materials and Methods: A cylindrical phantom was designed with a diameter of 8 cm and a height of 10 cm. Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites were designed as a core-shell with a diameter of 80 nm. Simulation results were utilized to reconstruct cross-sectional images through the filtered back-projection (FBP) algorithm in MATLAB software. Signal intensity and contrast to noise ratio (CNR) of tested contrast agents were calculated in spectral CT images.
Results: The results indicated a comparable image quality for Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites at different energy bins. However, in the energy range of 80 to 120 keV (bin 4 and 5), the difference in signal intensity and CNR between these two nanocomposites increased. The maximum signal intensity and CNR for Fe3O4@Au and Fe3O4@Bi were acquired at the highest concentration. The maximum signal intensity for Fe3O4@Au was 144±10 (HU) in the 4th energy bin and for Fe3O4@Bi 162±19 (HU) in the 5th energy bin. Besides, the maximum CNRs of 74±6 and 67.5±9 for Fe3O4@Au in bin 4, while for Fe3O4@Bi in bin 5 were obtained respectively.
Conclusion: Based on our results, Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites have provided promising results as contrast agents in spectral CT. Fe3O4@Bi nanocomposites are recommended due to their lower price and availability.

Keywords


1.  Mahan MM, Doiron AL. Gold nanoparticles as x-ray, CT, and multimodal imaging contrast agents: formulation, targeting, and methodology. J Nanomater. 2018; 2018: 5837276.
2.    kavousi z, Karimian A, Jabbari I. Assessment of x-ray crosstalk in a computed tomography scanner with small detector elements using Monte Carlo method. IJMP. 2018; 15(3): 169-175.
3.    Chen J, Yang XQ, Qin MY, Zhang XS, Xuan Y, Zhao YD. Hybrid nanoprobes of bismuth sulfide nanoparticles and CdSe/ZnS quantum dots for mouse computed tomography/fluorescence dual mode imaging. J Nanobiotechnology. 2015; 13: 76.
4.    Mullner M, Schlattl H, Hoeschen C, Dietrich O. Feasibility of spectral CT imaging for the detection of liver lesions with gold-based contrast agents - a simulation study. Phys Med. 2015; 31(8): 875-881.
5.    Van Ommen F, Bennink E, Vlassenbroek A, Dankbaar JW, Schilham AMR, Viergever MA, et al. Image quality of conventional images of dual-layer spectral CT: a phantom study. Med Phys. 2018; 45(7): 3031-3042.
6.    Si-Mohamed S, Bar-Ness D, Sigovan M, Tatard-Leitman V, Cormode DP, Naha PC, et al. Multicolour imaging with spectral photon-counting CT: a phantom study. Eur Radiol Exp. 2018; 2(1): 34.
7.    Jo BD, Park SJ, Kim HM, Kim DH, Kim HJ. Spectral computed tomography for quantitative decomposition of vulnerable plaques using a dual-energy technique: a Monte Carlo simulation study. J Instrum. 2016; 11(02): P02011-P.
8.    Kim J, Bar-Ness D, Si-Mohamed S, Coulon P, Blevis I, Douek P, et al. Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci Rep. 2018; 8(1): 12119.
9.    Willemink M, Persson M, Pourmorteza A, Pelc N, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiol Artif Intell. 2018; 289: 172656.
10.    Badea CT, Clark DP, Holbrook M, Srivastava M, Mowery Y, Ghaghada KB. Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys Med Biol. 2019; 64(6): 065007.
11.    Amato C, Klein L, Wehrse E, Rotkopf LT, Sawall S, Maier J, et al. Potential of contrast agents based on high-Z elements for contrast-enhanced photon-counting computed tomography. Med Phys. 2020.
12.    Tao S, Rajendran K, McCollough CH, Leng S. Feasibility of multi‐contrast imaging on dual‐source photon counting detector (PCD) CT: An initial phantom study. Med Phys. 2019.
13.    Boussel L, Coulon P, Thran A, Roessl E, Martens G, Sigovan M, et al. Photon counting spectral CT component analysis of coronary artery atherosclerotic plaque samples. Br J Radiol. 2014; 87(1040): 20130798.
14.    Pelc NJ, Glick SJ, Samei E, Didier CS, Nishikawa RM. The effect of characteristic x-rays on the spatial and spectral resolution of a CZT-based detector for breast CT.  Medical Imaging 2011: Physics of Medical Imaging 2011.
15.    Jo B, Im HS, Kim HJ, Son TJ. The potential of spectral-CT for material decomposition with gold-nanoparticle and iodine contrast. 2015; 51: 22-25.
16.    Lu G, Marsh S, Damet J, Carbonez P, Laban J, Bateman C, et al. Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements. Australas Phys Eng Sci Med. 2017; 40(2): 297-303.
17.    Sun IC, Eun DK, Na JH, Lee S, Kim IJ, Youn IC, et al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry. 2009; 15(48): 13341-13347.
18.    Karunamuni R, Tsourkas A, Maidment AD. Exploring silver as a contrast agent for contrast-enhanced dual-energy X-ray breast imaging. Br J Radiol. 2014; 87(1041): 20140081.
19.    Kang S, Eom J, Kim B, Lee S. Evaluation of gold K-edge imaging using spectral computed tomography with a photon-counting detector: A Monte Carlo simulation study. Optik. 2017; 140: 253-260.
20.    Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013; 113(3): 1641-1666.
21.    Rathnayake S, Mongan J, Torres AS, Colborn R, Gao DW, Yeh BM, et al. In vivo comparison of tantalum, tungsten, and bismuth enteric contrast agents to complement intravenous iodine for double-contrast dual-energy CT of the bowel. Contrast Media Mol Imaging. 2016; 11(4): 254-261.
22.    Ghadiri H, Ay MR, Shiran MB, Soltanian-Zadeh H, Zaidi H. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging. Br J Radiol. 2013; 86(1029): 20130308.
23.    Chhour P, Naha PC, Cheheltani R, Benardo B, Mian S, Cormode DP. Gold nanoparticles for biomedical applications: synthesis and in vitro evaluation.  Nanomaterials in Pharmacology: Springer; 2016. p. 87-111.
24.    Sadeghian M, Akhlaghi P, Mesbahi A. Investigation of imaging properties of novel contrast agents based on gold, silver and bismuth nanoparticles in spectral computed tomography using Monte Carlo simulation.  PJMPE. 2020; 26: 21-29.
25.    Xi D, Dong S, Meng X, Lu Q, Meng L, Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Adv. 2012; 2(33): 12515-12524.
26.    Dehghani S, riyahi alam N, Shahriarian S, Mortezazadeh T, Haghgoo S, Golmohamadpour A, et al. The effect of size and aspect ratio of Fe-MIL-88B-NH2 metal-organic frameworks on their relaxivity and contrast enhancement properties in MRI: in vitro and in vivo studies.  J Nanopart Res. 2018; 20.
27.    Mansouri H, Gholibegloo E, Mortezazadeh T, Yazdi MH, Ashouri F, Malekzadeh R, et al. A biocompatible theranostic nanoplatform based on magnetic gadolinium-chelated polycyclodextrin: in vitro and in vivo studies. Carbohydr Polym. 2021; 254: 117262.
28.    Cole L, Ross R, Tilley J, Vargo-Gogola T, Roeder R. Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine (Lond). 2015; 10: 321-341.
29.    Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano lett. 2008; 8(11): 3715-3723.
30.    Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, et al. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci Rep. 2019; 9(1): 14912.
31.    Li C-H, Kuo T, Su H-J, Lai W-Y, Yang P-C, Chen J-S, et al. Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep. 2015; 5: 15675.
32.    Mortezazadeh T, Gholibegloo E, Khoobi M, Alam NR, Haghgoo S, Mesbahi A. In vitro and in vivo characteristics of doxorubicin-loaded cyclodextrine-based polyester modified gadolinium oxide nanoparticles: a versatile targeted theranostic system for tumour chemotherapy and molecular resonance imaging.  J Drug Target. 2020; 28(5): 533-546.
33.    Sanchez LM, Alvarez VA. Advances in magnetic noble metal/iron-based oxide hybrid nanoparticles as biomedical devices. Bioengineering (Basel). 2019; 6(3): 75.
34.    Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, et al. Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem. 2012; 22: 15110-15120.
35.    Dheyab MA, Aziz AA, Jameel MS, Noqta OA, Mehrdel B. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications. Chin J Phys. 2020; 64: 305-325.
36.    Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015; 115(19): 10637-10689.
37.    Pariti A, Desai P, Maddirala SKY, Ercal N, Katti K, Liang X, et al. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation. Mater Res Express. 2014; 1: 035023.
38.    Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, et al. Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications.ACS Appl Mater Interfaces. 2013; 5(20): 10357-10366.
39.    Narayanan S, Sathy BN, Mony U, Koyakutty M, Nair SV, Menon D. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces. 2012; 4(1): 251-260.
40.    Wang G, Gao W, Zhang X, Mei X. Au nanocage functionalized with Ultra-small Fe3O4 nanoparticles for targeting T1–T2Dual MRI and CT imaging of tumor. Sci Rep. 2016; 6: 28258.
41.    Pelowitz DB: MCNPX user’s manual version (2.6.0).; Los Alamos National Laboratory. 2008.
42.    Motiei M, Dreifuss T, Sadan T, Omer N, Blumenfeld-Katzir T, Fragogeorgi E, et al. Trimodal nanoparticle contrast agent for CT, MRI and SPECT imaging: synthesis and characterization of radiolabeled core/shell iron oxide@gold nanoparticles. Chem Lett. 2019; 48: 291-294.
43.    Veintemillas-Verdaguer S, Luengo Y, Serna C, Vergés M, Varela M, Calero M, et al. Bismuth labeling for the CT assessment of local administration of magnetic nanoparticles. Nanotechnology. 2015; 26: 135101.
44.    Luo K, Zhao J, Jia C, Chen Y, Zhang Z, Zhang J, et al. Integration of Fe3O4 with Bi2S3 for multi-modality tumor theranostics. ACS Appl Mater Interfaces. 2020; 12(20): 22650-22660.